Category Archives: Cosmology

The First Test of Standard and Holographic Cosmology Models Ends in a Draw

Utrecht University (Netherlands) Professor Gerard ’t Hooft was the first to propose the “holographic principle,” in which all information about a volume of space can be thought of as being encoded on a lower-dimensional “boundary” of that volume.

Stanford Professor Leonard Susskind was one of the founders of string theory and, in 1995, developed the first string theory interpretation of the holographic principle to black holes. Dr. Susskind’s analysis showed that, consistent with quantum theory, information is not lost when matter falls into a black hole. Instead, it is encoded on a lower-dimensional “boundary” of the black hole, namely the event horizon.

Black hole event horizonSource: screenshot from video, “Is the Universe a Hologram?”

Extending the holographic principle to the universe as a whole, a lower-dimensional “boundary,” or “cosmic horizon,” around the universe can be thought of as a hologram of the universe. Quantum superposition suggests that this hologram is indistinguishable from the volume of space within the cosmic horizon.

You can see a short (15:49 minute) 2015 video interview of Dr. Susskind, “Is The Universe A Hologram?” at the following link:

If you have the time, also check out the longer (55:26) video lecture by Dr. Susskind entitled, “Leonard Susskind on The World As Hologram.” In this video, he explains the meaning of “information” and how information on an arbitrary volume of space can be encoded in one less dimension on a surface surrounding the volume.

You also might enjoy the more detailed story in Dr. Susskind’s 2008 book, “The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics.”

Leonard Susskind book cover   Source: Little, Brown and Company

In my 28 September 2016 post, “The Universe is Isotropic,” I reported on a conclusion reached by researchers using data from the Planck spacecraft’s all-sky survey of the cosmic microwave background (CMB). The researchers noted that an anisotropic universe would leave telltale patterns in the CMB. However, these researchers found that the actual CMB shows only random noise and no signs of such patterns.

More recently, a team of researchers from Canada, UK and Italy, also using the Planck spacecraft’s CBM data set, have offered an alternative view that the universe may be a hologram.  You’ll find the abstract for the 27 January 2017 original research paper by N. Afshordi, et al., “From Planck Data to Planck Era: Observational Tests of Holographic Cosmology,” in Physical Review Letters at the following link:

The authors note:

“We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (Λ CDM) of cosmology.”

“Competitive” means that neither model disproves the other.  So, we have a draw.

If you are a subscriber to Physical Review Letters, you can download the complete paper by N. Afshordi, et al. from the Physical Review Letters site.


Perspective on the Detection of Gravitational Waves

On 14 September 2015, the U.S. Laser Interferometer Gravitational-Wave Observatory (LIGO) became the first observatory to detect gravitational waves. With two separate detector sites (Livingston, Louisiana, and Hanford, Washington) LIGO was able to define an area of space from which the gravitational waves, dubbed GW150914, are likely to have originated, but was not able to pinpoint the source of the waves. See my 11 February 2016 post, “NSF and LIGO Team Announce First Detection of Gravitational Waves,” for a summary of this milestone event.

You’ll find a good overview on the design and operation of LIGO and similar laser interferometer gravity wave detectors in the short (9:06) Veratisium video, “The Absurdity of Detecting Gravitational Waves,” at the following link:

The LIGO team reports that the Advanced LIGO detector is optimized for “a range of frequencies from 30 Hz to several kHz, which covers the frequencies of gravitational waves emitted during the late inspiral, merger, and ringdown of stellar-mass binary black holes.”

First observing run (O1) of the Advanced LIGO detector

The LIGO team defines O1 as starting on 12 September 2015 and ending on 19 January 2016. During that period, the LIGO team reported that it had, “unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ,” and also identified a third possible signal, LVT151012. The following figure shows the time evolution of the respective gravitational wave signals from when they enter the LIGO detectors’ sensitive band at 30 Hz.

LIGO GW signals screenshot

Source: B. P. Abbot et al., PHYS. REV. X 6, 041015 (2016)

The second detection of gravitational waves, GW151226, occurred on 26 December 2015. You’ll find the 16 June 2016 LIGO press release for this event at the following link:

At the following link, you can view a video showing a simulation of GW151226, starting at a frequency of 35 Hz and continuing through the last 55 gravitational-wave cycles before the binary black holes merge:

GW151226 simularion screenshotSource: Max Planck Institute for Gravitational Physics/ Simulating eXtreme Spacetime (SXS) project

In their GW151226 press release, the LIGO team goes out on a limb and makes the following estimate:

“….we can now start to estimate the rate of black hole coalescences in the Universe based not on theory, but on real observations. Of course with just a few signals, our estimate has big uncertainties, but our best right now is somewhere between 9 and 240 binary black hole coalescences per cubic Gigaparsec per year, or about one every 10 years in a volume a trillion times the volume of the Milky Way galaxy!”

More details on the GW151226 detection are available in the paper “GW151266: Observation of Gravitational Waves from a 22-Solar Mass Black Hole Coalescence,” at the following link:

LIGO releases its data to the public. Analyses of the LIGO public data already are yielding puzzling results. In December 2016, researchers reported finding “echoes” in the gravitational wave signals detected by LIGO. If further analysis indicates that the “echoes” are real, they may indicate a breakdown of Einstein’s general theory of relativity at or near the “edge” of a black hole. You can read Zeeya Marali’s 9 December 2016 article, “LIGO black hole echoes hint at general relativity breakdown,” at the following link:

Second observing run (O2) of the Advanced LIGO detector is in progress now

Following a 10-month period when they were off-line for modifications, the Advanced LIGO detectors returned to operation on 30 November 2016 with a 10% improvement in the sensitivity of their interferometers. The LIGO team intends to further improve this sensitivity by a factor of two during the next few years.

VIRGO will add the capability to triangulate the source of gravitational waves

In my 16 December 2015 post, “100th Anniversary of Einstein’s General Theory of Relativity and the Advent of a New Generation of Gravity Wave Detectors,” I reported on other international laser interferometer gravitational wave detectors. The LIGO team has established a close collaboration with their peers at the European Gravitational Observatory, which is located near Pisa, Italy. Their upgraded detector, VIRGO, in collaboration with the two LIGO detectors, is expected to provide the capability to triangulate gravitational wave sources. With better location information on the source of gravitational waves, other observatories can be promptly notified to join the search using other types of detectors (i.e., optical, infrared and radio telescopes).

VIRGO is expected to become operational in 2017, but technical problems, primarily with the mirror suspension system, may delay startup. You’ll find a 16 February 2017 article on the current status of VIRGO at the following link:

Perspective on gravitational wave detection

Lyncean member Dave Groce recommends the excellent video of an interview of Caltech Professor Kip Thorne (one of the founders of LIGO) by “Einstein” biographer Walter Issacson. This 2 November 2016 video provides a great perspective on LIGO’s first detection of gravitational waves and on the development of gravitational wave detection capabilities. You’ll find this long (51:52) but very worthwhile video at the following link:

Dr. Thorne noted that, at the extremely high sensitivity of the Advanced LIGO detectors, we are beginning to see the effects of quantum fluctuations in “human sized objects,” in particular, the 40 kg (88.2 pound) mirrors in the LIGO interferometers. In each mirror, the center of mass (the average position of all the mass in the mirror) fluctuates due to quantum physics at just the level of the Advanced LIGO noise.

In the interview, Dr. Thorne also discusses several new observatories that will be become available in the following decades to expand the spectrum of gravitational waves that can be detected. These are shown in the following diagram.

Spectrum for gravitational wave detection screenshotSource: screenshot from Kip Thorne / Walter Issacson interview

  •  LISA = Laser Interferometer Space Antenna
  • PTA = Pulsar Timing Array
  • CMB = Cosmic microwave background

See my 27 September 2016 post, “Space-based Gravity Wave Detection System to be Deployed by ESA,” for additional information on LISA.

Clearly, we’re just at the dawn of gravitational wave detection and analysis. With the advent of new and upgraded gravitational wave observatories during the next decade, there will be tremendous challenges to align theories with real data.   Through this process, we’ll get a much better understanding of our Universe.



Emergent Gravity Theory Passes its First Test

In 2010, Prof. Erik Verlinde, University of Amsterdam, Delta Institute for Theoretical Physics, published the paper, “The Origin of Gravity and the Laws of Newton.” In this paper, the author concluded:

 “The results of this paper suggest gravity arises as an entropic force, once space and time themselves have emerged. If the gravity and space time can indeed be explained as emergent phenomena, this should have important implications for many areas in which gravity plays a central role. It would be especially interesting to investigate the consequences for cosmology. For instance, the way redshifts arise from entropy gradients could lead to many new insights.

The derivation of the Einstein equations presented in this paper is analogous to previous works, in particular [the 1995 paper by T. Jacobson, ‘Thermodynamics of space-time: The Einstein equation of state.’]. Also other authors have proposed that gravity has an entropic or thermodynamic origin, see for instance [the paper by T. Padmanabhan, ‘Thermodynamical Aspects of Gravity: New insights.’]. But we have added an important element that is new. Instead of only focusing on the equations that govern the gravitational field, we uncovered what is the origin of force and inertia in a context in which space is emerging. We identified a cause, a mechanism, for gravity. It is driven by differences in entropy, in whatever way defined, and a consequence of the statistical averaged random dynamics at the microscopic level. The reason why gravity has to keep track of energies as well as entropy differences is now clear. It has to, because this is what causes motion!”

You can download Prof. Verlinde’s 2010 paper at the following link:

On 8 November 2016, Delta Institute announced that Prof. Verlinde had published a new research paper, “Emergent Gravity and the Dark Universe,” expanding on his previous work. You can read this announcement and see a short video by Prof. Verlinde on the Delta Institute website at the following link:

You can download this new paper at the following link:

I found it helpful to start with Section 8, Discussion and Outlook, which is the closest you will find to a layman’s description of the theory.

On the website, a short 8 November 2016 article, “New Theory of Gravity Might Explain Dark Matter,” provides a good synopsis of Verlinde’s emergent gravity theory:

“According to Verlinde, gravity is not a fundamental force of nature, but an emergent phenomenon. In the same way that temperature arises from the movement of microscopic particles, gravity emerges from the changes of fundamental bits of information, stored in the very structure of spacetime……

According to Erik Verlinde, there is no need to add a mysterious dark matter particle to the theory……Verlinde shows how his theory of gravity accurately predicts the velocities by which the stars rotate around the center of the Milky Way, as well as the motion of stars inside other galaxies.

One of the ingredients in Verlinde’s theory is an adaptation of the holographic principle, introduced by his tutor Gerard ‘t Hooft (Nobel Prize 1999, Utrecht University) and Leonard Susskind (Stanford University). According to the holographic principle, all the information in the entire universe can be described on a giant imaginary sphere around it. Verlinde now shows that this idea is not quite correct—part of the information in our universe is contained in space itself.

This extra information is required to describe that other dark component of the universe: Dark energy, which is believed to be responsible for the accelerated expansion of the universe. Investigating the effects of this additional information on ordinary matter, Verlinde comes to a stunning conclusion. Whereas ordinary gravity can be encoded using the information on the imaginary sphere around the universe, as he showed in his 2010 work, the result of the additional information in the bulk of space is a force that nicely matches that attributed to dark matter.”

Read the full article at the following link:

On 12 December 2016, a team from Leiden Observatory in The Netherlands reported favorable results of the first test of the emergent gravity theory. Their paper, “First Test of Verlinde’s Theory of Emergent Gravity Using Weak Gravitational Lensing Measurements,” was published in the Monthly Notices of the Royal Astronomical Society. The complete paper is available at the following link:

An example of a gravitational lens is shown in the following diagram.

Gravitational-lensing-galaxyApril12_2010-1024x768-e1481555047928 Source: NASA, ESA & L. Calça

As seen from the Earth, the light from the galaxy at the left is bent by the gravitational forces of the galactic cluster in the center, much like light passing though an optical lens.

The Leiden Observatory authors reported:

“We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.”

These are exciting times! As noted in the article, “We might be standing on the brink of a new scientific revolution that will radically change our views on the very nature of space, time and gravity.”

New Testable Theory on the Flow of Time and the Meaning of Now

Richard A. Muller, a professor of physics at the University of California, Berkeley, and Facility Senior Scientist at Lawrence Berkeley Laboratory, is the author of in intriguing new book entitled, “NOW, the Physics of Time.”

NOW cover page  Source: W. W. Norton & Company

In Now, Muller addresses weaknesses in past theories about the flow of time and the meaning of “now.” He also presents his own revolutionary theory, one that makes testable predictions. He begins by describing the physics building blocks of his theory: relativity, entropy, entanglement, antimatter, and the Big Bang. Muller points out that the standard Big Bang theory explains the ongoing expansion of the universe as the continuous creation of new space. He argues that time is also expanding and that the leading edge of the new time is what we experience as “now.”

You’ll find a better explanation in the UC Berkeley short video, “Why does time advance?: Richard Muller’s new theory,” at the following link:

In the video, Muller explains that his theory would have resulted in a measurable 1 millisecond delay in “chirp” seen in the first gravitational wave signals detected on 11 February 2016 by the Laser Interferometer Gravitational-Wave Observatory (LIGO). LIGO’s current sensitivity precluded seeing the predicted small delay. If LIGO and other and-based gravity wave detector sensitivities are not adequate, a potentially more sensitive space-based gravity wave detection array, eLISA, should be in place in the 2020s to test Muller’s theory.

It’ll be interesting to see if LIGO, any of the other land-based gravity wave detectors, or eLISA will have the needed sensitivity to prove or disprove Muller’s theory.

For more information related to gravity wave detection, see my following posts:

  • 16 December 2015 post, “100th Anniversary of Einstein’s General Theory of Relativity and the Advent of a New Generation of Gravity Wave Detectors ”
  • 11 February 2016 post, “NSF and LIGO Team Announce First Detection of Gravitational Waves”
  • 27 September 2016, “Space-based Gravity Wave Detection System to be Deployed by ESA”

The Universe is Isotropic

The concepts of up and down appear to be relatively local conventions that can be applied at the levels of subatomic particles, planets and galaxies. However, the universe as a whole apparently does not have a preferred direction that would allow the concepts of up and down to be applied at such a grand scale.

A 7 September 2016 article entitled, “It’s official: You’re lost in a directionless universe,” by Adrian Cho, provides an overview of research that demonstrates, with a high level of confidence, that the universe is isotropic. The research was based on data from the Planck space observatory. In this article, Cho notes:

“Now, one team of cosmologists has used the oldest radiation there is, the afterglow of the big bang, or the cosmic microwave background (CMB), to show that the universe is “isotropic,” or the same no matter which way you look: There is no spin axis or any other special direction in space. In fact, they estimate that there is only a one-in-121,000 chance of a preferred direction—the best evidence yet for an isotropic universe. That finding should provide some comfort for cosmologists, whose standard model of the evolution of the universe rests on an assumption of such uniformity.”

The European Space Agency (ESA) developed the Planck space observatory to map the CMB in microwave and infrared frequencies at unprecedented levels of detail. Planck was launched on 14 May 2009 and was placed in a Lissajous orbit around the L2 Lagrange point, which is 1,500,000 km (930,000 miles) directly behind the Earth. L2 is a quiet place, with the Earth shielding Planck from noise from the Sun. The approximate geometry of the Earth-Moon-Sun system and a representative spacecraft trajectory (not Planck, specifically) to the L2 Lagrange point is shown in the following figure.

Lissajous orbit L2Source: Abestrobi / Wikimedia Commons

The Planck space observatory entered service on 3 July 2009. At the end of its service life, Planck departed its valuable position at L2, was placed in a heliocentric orbit, and was deactivated on 23 October 2013. During more than four years in service, Planck performed its CBM mapping mission with much greater resolution than NASA’s Wilkinson Microwave Anisotropy Probe, which operated from 2001 to 2010.

One key result of the Planck mission is the all-sky survey shown below.

Planck_CMB_black_background_fullwidthPlanck all-sky survey. Source; ESA / Planck Collaboration

ESA characterizes this map as follows:

“The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the Universe was just 380,000 years old. It shows tiny temperature fluctuations that correspond to regions of slightly different densities, representing the seeds of all future structure: the stars and galaxies of today.”

The researchers who reported that the universe was isotropic noted that an anisotropic universe would leave telltale patterns in the CMB. However, these researchers found that the actual CMB shows only random noise and no signs of such patterns.

You’ll find more details on the Planck mission and scientific results on the ESA’s website at the following link:

You can read Adrian Cho’s article on the Science magazine website at the following link:

The original research paper, “How Isotropic is the Universe?” by Saadeh, D., et al., was published on 21 September 2016. It is available on the Physical Review Letters website, if you have a subscription, at the following link:



Space-based Gravity Wave Detection System to be Deployed by ESA

The first detection of gravitational waves occurred on 14 September 2015 at the land-based Laser Interferometer Gravitational-Wave Observatory (LIGO). Using optical folding techniques, LIGO has an effective baseline of 1,600 km (994 miles). See my 16 December 2015 and 11 February 2016 posts for more information on LIGO and other land-based gravitational wave detectors.

Significantly longer baselines, and theoretically greater sensitivity can be achieved with gravitational wave detectors in space. Generically, such a space-based detector has become known as a Laser Interferometer Space Antenna (LISA). Three projects associated with space-based gravitational wave detection are:

  • LISA (the project name predated the current generic usage of LISA)
  • LISA Pathfinder (a space-based gravitational wave detection technology demonstrator, not a detector)
  • Evolved LISA (eLISA)

These projects are discussed below.

The science being addressed by space-based gravitational wave detectors is discussed in the eLISA white paper, “The Gravitational Universe.” You can download this whitepaper, a 1-page summary, and related gravitational wave science material at the following link:


The LISA project originally was planned as a joint European Space Agency (ESA) and National Aeronautics & Space Administration (NASA) project to detect gravitational waves using a very long baseline, triangular interferometric array of three spacecraft.

Each spacecraft was to contain a gravitational wave detector sensitive at frequencies between 0.03 mHz and 0.1 Hz and have the capability to precisely measure its distances to the other two spacecraft forming the array. The equilateral triangular array, which was to measure about 5 million km (3.1 million miles) on a side, was expected to be capable of measuring gravitational-wave induced strains in space-time by precisely measuring changes of the separation distance between pairs of test masses in the three spacecraft. In 2011, NASA dropped out of this project because of funding constraints.

LISA Pathfinder

The LISA Pathfinder (LPF) is a single spacecraft intended to validate key technologies for space-based gravitational wave detection. It does not have the capability to detect gravity waves.

This mission was launched by ESA on 3 December 2015 and the spacecraft took station in a Lissajous orbit around the Sun-Earth L1 Lagrange point on 22 January 2016. L1 is directly between the Earth and the Sun, about 1.5 million km (932,000 miles) from Earth. An important characteristic of a Lissajous orbit is that the spacecraft will follow the L1 point without requiring any propulsion. This is important for minimizing external forces on the LISA Pathfinder experiment package. The approximate geometry of the Earth-Moon-Sun system and a representative spacecraft (not LPF, specifically) stationed at the L1 Lagrange point is shown in the following figure.

L1 Lagrange pointSource: Wikimedia Commons

The LISA Pathfinder’s mission is to validate the technologies used to shield two free-floating metal cubes (test masses), which form the core of the experiment package, from all internal and external forces that could contribute to noise in the gravitational wave measurement instruments. The on-board measurement instruments (inertial sensors and a laser interferometer) are designed to measure the relative position and orientation of the test masses, which are 38 cm (15 inches) apart, to an accuracy of less than 0.01 nanometers (10e-11 meters). This measurement accuracy is believed to be adequate for detecting gravitational waves using this technology on ESA’s follow-on mission, eLISA.

The first diagram below is an artist’s impression of the LISA Pathfinder technology package, showing the inertial sensors housing the test masses (gold) and the laser interferometer (middle platform). The second diagram provides a clearer view of the test masses and the laser interferometer.

LPF technology package 1

Source: ESA/ATG medialab, August 2015LPF technology package 2Source: ESA LISA Pathfinder briefing, 7 June 2016

You’ll find more general information in an ESA LISA Pathfinder overview, which you can download from NASA’s LISA website at the following link:

LISA Pathfinder was commissioned and ready for scientific work on 1 March 2016. In a 7 June 2016 briefing, ESA reported very favorable performance results from LISA Pathfinder:

  • LPF successfully validated the technologies used in the local (in-spacecraft) instrument package (test masses, inertial sensors and interferometer).
  • LPF interferometer noise was a factor of 100 less than on the ground.
  • The measurement instruments can see femtometer motion of the test masses (LPF goal was picometer).
  • Performance is essentially at the level needed for the follow-on eLISA mission

You can watch this full (1+ hour) ESA briefing at the following link:


Evolved LISA, or eLISA, is ESA’s modern incarnation of the original LISA program described previously. ESA’s eLISA website home page is at the following link:

As shown in the following diagrams, three eLISA spacecraft will form a very long baseline interferometric array that is expected to directly observe gravitational waves from sources anywhere in the universe. In essence, this array will be a low frequency microphone listening for the sounds of gravitational waves as they pass through the array.

eLISA constellation 1Source: ESAeLISA constellation 2Source: ESA

As discussed previously, gravity wave detection depends on the ability to very precisely measure the distance between test masses that are isolated from their environment but subject to the influence of passing gravitational waves. Measuring the relative motion of a pair of test masses is considerably more complex for eLISA than it was for LPF. The relative motion measurements needed for a single leg of the eLISA triangular array are:

  • Test mass 1 to Spacecraft 1
  • Spacecraft 1 to Spacecraft 2
  • Spacecraft 2 to Test Mass 2

This needs to be done for each of the three legs of the array.

LPF validated the technology for making the test mass to spacecraft measurement. Significant development work remains to be done on the spacecraft-to-spacecraft laser system that must take precise measurements at very long distances (5 million km, 3.1 million miles) of the relative motion between each pair of spacecraft.

So, when will eLISA be launched? The eLISA website currently suggests a launch in 2028. See Science Context 2028 on the eLISA website at the following link:

In the 6 June 2016 LISA Pathfinder briefing, LPF and ESA officials raised the possibility of a somewhat later launch date (2029 – 2032 time frame). Whenever it happens, eLISA will be a remarkable collaborative technical achievement and a new window to our universe.

Simulating Extreme Spacetimes

Thanks to Dave Groce for sending me the following link to the Caltech-Cornell Numerical Relativity collaboration; Simulating eXtreme Spacetimes (SXS):

Caltech SXSSource: SXS

From the actual website (not the image above), click on the yellow “Admit One” ticket and you’re on your way.

Under the “Movies” tab, you’ll find many video simulations that help visualizes a range of interactions between two black holes and between a black hole and a neutron star. Following is a direct link:

A movie visualizing GW150914, the first ever gravitational wave detection on 14 September 2015, is at the following SXS link:

At the above link, you also can listen to the sound of the GW150914 “in-spiral” event (two black holes spiraling in on each other).  You can read more about the detection of GW150914 in my 11 February 2016 post.

On the “Sounds” tab on the SXS website, you’ll find that different types of major cosmic events are expected to emit gravitational waves with waveforms that will help characterize the original event. You can listen to the expected sounds from a variety of extreme cosmic events at the following SXS link:

Have fun exploring SXS.


NSF and LIGO Team Announce First Detection of Gravitational Waves

Today, 11 February 2016, the National Science Foundation (NSF) and the Laser Interferometer Gravitational-Wave Observatory (LIGO) project team announced that the first detection of gravitational waves occurred on 14 September 2015. You can view a video of this announcement at the following link:

The first paper on this milestone event, “Observation of Gravitational Waves From a Binary Black Hole Merger,” is reported in Physical Review Letters, at the following link:

The recorded signals from the two LIGO sites, Livingston, LA and Hanford, WA, are shown below, with the Hanford data time shifted to account for the slightly later arrival time of the gravitational wave signal at that detector location. The magnitude of the gravitational wave signal was characterized as being just below the detection threshold of LIGO before installation of the new advanced detectors, which improve LIGO sensitivity by a factor of 3 to 10.

LIGO signals

Source: NSF/LIGO

This milestone occurred during the engineering testing phase of the advanced LIGO detectors, before the start of their first official “observing run” on 18 September 2015.

Analysis and simulations conducted on the data indicate that the observed gravitational wave signals were generated when two orbiting black holes coalesced into a single black hole of smaller total mass and ejected about three solar masses of energy as gravitational waves.

In the Physical Review Letters paper, the authors provide the following diagram, which gives a physical interpretation of the observed gravitational wave signals.

Binary black holes merge

Note the very short timescale of this extraordinarily dynamic process. The recorded gravitational wave signals yielded an audible “chirp” when the two black holes merged.

With only two LIGO detectors, the source of the observed gravitational waves could not be localized, but the LIGO team reported that the source was in the southern sky, most likely in the vicinity of the Magellanic Clouds.

Localization of black hole merger Source: NSF/LIGO

The ability to localize gravitational wave signals will improve when additional gravitational wave detectors become operational later in this decade.

For more information on the current status of LIGO and other new-generation gravitational wave detectors, see my 16 December 2015 post: “100th Anniversary of Einstein’s Theory of General Relativity and the Advent of a New Generation of Gravity Wave Detectors.”

100th Anniversary of Einstein’s General Theory of Relativity and the Advent of a New Generation of Gravity Wave Detectors

One hundred years ago, Albert Einstein presented his General Theory of Relativity in November 1915, at the Prussian Academy of Science. Happy Anniversary, Dr. Einstein!

Today, general relativity is being tested with unprecedented accuracy with a new generation of gravity-wave “telescopes” in the U.S., Italy, Germany, and Japan. All are attempting to directly detect gravity waves, which are the long-predicted quakes in space-time arising from cataclysmic cosmic sources.

The status of four gravity-wave telescopes is summarized below.

USA: Laser Interferometer Gravitational-Wave Observatory (LIGO)

LIGO is a multi-kilometer-scale gravitational wave detector that uses laser interferometry to, hopefully, measure the minute ripples in space-time caused by passing gravitational waves. LIGO consists of two widely separated interferometers within the United States; one in Hanford, WA and the other in Livingston, LA. These facilities are operated in unison to detect gravitational waves. The Livingston and Hanford LIGO sites are shown in the following photos (Hanford above, Livingston below):

ligo-hanford-aerial-02Source LIGO Caltechligo-livingston-aerial-03Source: LIGO Caltech

LIGO is operated by Caltech and MIT and is supported by the National Academy of Sciences. For more information, visit the LIGO website at the following link:

Basically, LIGO is similar to the traditional interferometer used in 1887 in the famous Michelson-Morley experiment (–Morley_experiment). However, the LIGO interferometer incorporates novel features to greatly increase its sensitivity. The basic arrangement of the interferometer is shown in the following diagram.

LIGO experiment setupSource: LIGO Caltech

Each leg of the interferometer has a physical length of 4 km and is a resonant Fabry-Perot cavity that uses a complex set of mirrors to extend the effective arm length by a factor of 400 to 1,600 km.

On 18 September 2015, the first official “observing run” using LIGO’s advanced detectors began. This “observing run” is planned to last three months. LIGO’s advanced detectors are already three times more sensitive than Initial LIGO was by the end of its observational lifetime in 2007. You can read about this milestone event at the following link:

You also can find much more information on the LIGO Scientific Collaboration (LSC) at the following link:

Italy: VIRGO

VIRGO is installed near Pisa, Italy, at the site of the European Gravitational Observatory ( VIRGO is intended to directly observe gravitational waves using a Michelson interferometer with arms that are 3 km long, with resonant Fabry-Perot cavities that increase the effective arm length by a factor of 50 to 150 km. The initial version of VIRGO operated from 2007 to 2011 and the facility currently is being upgraded with a new, more sensitive detector. VIRGO is expected to return to operation in 2018.

You can find much more information on VIRGO at the following link:

Germany: GEO600

GEO600 is installed near Hanover, Germany. It, too, uses a Michelson interferometer with arms that are 600 meters long, with resonant Fabry-Perot cavities that double the effective arm length to 1,200 meters.

You can find much more information on the GEO600 portal at the following link:

Japan: KAGRA Large-scale Cryogenic Gravitational Wave Telescope

The KAGRA telescope is installed deep underground, in tunnels of Kamioka mine, as shown in the following diagram.

img_abt_lcgtSource: KAGARA

Like the other facilities described previously, KAGRA is a Michelson interferometer with resonant Fabry-Perot cavities. The physical length of each arm is of 3 km (1.9 mi). KAGRA is expected to be in operation in 2018.

You can find much more information on KAGARA at the following links: