Category Archives: Marine Technology

Manufacturing the Reactor Vessel for an RITM-200 PWR for Russia’s new LK-60 Class of Polar Icebreakers

The first ship in the new LK-60 class of nuclear powered icebreakers, named Arktika, was launched on 16 June 2016 at the Baltic Shipyard in St. Petersburg, Russia. LK-60 class icebreakers are powered by two RITM-200 integral pressurized water reactors (PWR), each rated at 175 MWt, and together delivering 60 MW (80,460 hp) to an electric motor propulsion system driving three shafts.

LK-60 class icebreakers are the most powerful icebreakers in the world. Contracts for two additional LK-60 icebreakers were placed in May 2014. They are scheduled for delivery in 2020 (Sibr) & 2021 (Ural).

The general arrangement of the nuclear reactors in these ships is shown in the following two diagrams.

Two RITM-200 reactors installed on an LK-60 class icebreaker. Source: Atomenergomash

The basic design of the RITM-200 integral primary system is shown in the following diagram. The reactor and steam generators are in the same vessel. The four primary pumps are connected directly to the reactor vessel, creating a very compact primary system unit.

The two reactor vessels were installed in Arktika in September 2016, which is scheduled to be service-ready in mid-2019, and will operate from the Atomflot icebreaker port in Murmansk. Manufacturing of the reactor vessels for the second LK-60 icebreaker, Sibr, is in progress.

Above: Second integral reactor vessel for Arktika, with the primary pump housings installed. Source: Rosatom

Below: Integral reactor vessel at an earlier stage of manufacturing for Sibr.  Source: Atomenergomash

Below: Complete RITM-200 integral reactor vessel. Source: Atomenergomash

You can watch an Atomenergomash video (in Russian) showing how the RITM-200 reactor vessel is manufactured at the following link:

The U.S. has no nuclear powered icebreakers and only one, older polar-class icebreaker. See my 3 September 2015, “The Sad State of Affairs of the U.S. Icebreaking Fleet and Implications for Future U.S. Arctic Operations,” for more information on the U.S. icebreaker fleet.

 

 

 

Columbia – The Future of the U.S. FBM Submarine Fleet

On 14 December, 2016, the Secretary of the Navy, Ray Mabus, announced that the new class of U.S. fleet ballistic missile (FBM) submarines will be known as the Columbia-class, named after the lead ship, USS Columbia, SSBN-826 and the District of Columbia. Formerly, this submarine class was known simply as the “Ohio Replacement Program”.

USS ColumbiaColumbia-class SSBN. Source: U.S. Navy

There will be 12 Columbia-class SSBNs replacing 14 Ohio-class SSBNs. The Navy has designated this as its top priority program. All of the Columbia-class SSBNs will be built at the General Dynamics Electric Boat shipyard in Groton, CT.

Background – Ohio-class SSBNs

Ohio-class SSBNs make up the current fleet of U.S. FBM submarines, all of which were delivered to the Navy between 1981 and 1997. Here are some key points on the Ohio-class SSBNs:

  • Electric Boat’s FY89 original contract for construction of the lead ship, USS Ohio, was for about $1.1 billion. In 1996, the Navy estimated that constructing the original fleet of 18 Ohio-class SSBNs and outfitting them with the Trident weapons system cost $34.8 billion. That’s an average cost of about $1.9 billion per sub.
  • On average, each SSBN spend 77 days at sea, followed by 35 days in-port for maintenance.
  • Each crew consists of about 155 sailors.
  • The Ohio-class SSBNs will reach the ends of their service lives at a rate of about one per year between 2029 and 2040.

The Ohio SSBN fleet currently is carrying about 50% of the total U.S. active inventory of strategic nuclear warheads on Trident II submarine launched ballistic missiles (SLBMs). In 2018, when the New START nuclear force reduction treaty is fully implemented, the Ohio SSBN fleet will be carrying approximately 70% of that active inventory, increasing the strategic importance of the U.S. SSBN fleet.

It is notable that the Trident II missile initial operating capability (IOC) occurred in March 1990. The Trident D5LE (life-extension) version is expected to remain in service until 2042.

Columbia basic design features

Features of the new Columbia-class SSBN include:

  • 42 year ship operational life
  • Life-of-the-ship reactor core (no refueling)
  • 16 missile tubes vs. 24 on the Ohio-class
  • 43’ (13.1 m) beam vs. 42’ (13 m) on the Ohio-class
  • 560’ (170.7 m) long, same as Ohio-class
  • Slightly higher displacement (likely > 20,000 tons) than the Ohio class
  • Electric drive vs. mechanical drive on the Ohio-class
  • X-stern planes vs. cruciform stern planes on the Ohio-class
  • Accommodations for 155 sailors, same as Ohio

Design collaboration with the UK

The U.S. Navy and the UK’s Royal Navy are collaborating on design features that will be common between the Columbia-class and the UK’s Dreadnought-class SSBNs (formerly named “Successor” class). These features include:

  • Common Missile Compartment (CMC)
  • Common SLBM fire control system

The CMC is being designed as a structural “quad-pack”, with integrated missile tubes and submarine hull section. Each tube measures 86” (2.18 m) in diameter and 36’ (10.97 m) in length and can accommodate a Trident II SLBM, which is the type currently deployed on both the U.S. and UK FBM submarine fleets. In October 2016, General Dynamics received a $101.3 million contract to build the first set of CMCs.

CMC 4-packCMC “quad-pack.” Source: General Dynamics via U.S. Navy

The “Submarine Shaftless Drive” (SDD) concept that the UK is believed to be planning for their Dreadnought SSBN has been examined by the U.S. Navy, but there is no information on the choice of propulsor for the Columbia-class SSBN.

Design & construction cost

In the early 2000s, the Navy kicked off their future SSBN program with a “Material Solution Analysis” phase that included defining initial capabilities and development strategies, analyzing alternatives, and preparing cost estimates. The “Milestone A” decision point reached in 2011 allowed the program to move into the “Technology Maturation & Risk Reduction” phase, which focused on refining capability definitions and developing various strategies and plans needed for later phases. Low-rate initial production and testing of certain subsystems also is permitted in this phase. Work in these two “pre-acquisition” phases is funded from the Navy’s research & development (R&D) budget.

On 4 January 2017, the Navy announced that the Columbia-class submarine program passed its “Milestone B” decision review. The Acquisition Decision Memorandum (ADM) was signed by the Navy’s acquisition chief Frank Kendall. This means that the program legally can move into the Engineering & Manufacturing Development Phase, which is the first of two systems acquisition phases funded from the Navy’s shipbuilding budget. Detailed design is performed in this phase. In parallel, certain continuing technology development / risk reduction tasks are funded from the Navy’s R&D budget.

The Navy’s proposed FY2017 budget for the Columbia SSBN program includes $773.1 million in the shipbuilding budget for the first boat in the class, and $1,091.1 million in the R&D budget.

The total budget for the Columbia SSBN program is a bit elusive. In terms of 2010 dollars, the Navy had estimated that lead ship would cost $10.4 billion ($4.2 billion for detailed design and non-recurring engineering work, plus $6.2 billion for construction) and the 11 follow-on SSBNs will cost $5.2 billion each. Based on these cost estimates, construction of the new fleet of 12 SSBNs would cost $67.6 billion in 2010 dollars. Frank Kendall’s ADM provided a cost estimate in terms of 2017 dollars in which the detailed design and non-recurring engineering work was amortized across the fleet of 12 SSBNs. In this case, the “Average Procurement Unit Cost” was $8 billion per SSBN. The total program cost is expected to be about $100 billion in 2017 dollars for a fleet of 12 SSBNs. There’s quite a bit if inflation between the 2010 estimate and new 2017 estimate, and that doesn’t account for future inflation during the planned construction program that won’t start until 2021 and is expected to continue at a rate of one SSBN authorized per year.

The UK is contributing financially to common portions of the Columbia SSBN program.  I have not yet found a source for details on the UK’s contributions and how they add to the estimate for total program cost.

Operation & support (O&S) cost

The estimated average O&S cost target of each Columbia-class SSBN is $110 million per year in constant FY2010 dollars. For the fleet of 12 SSBNs, that puts the annual total O&S cost at $1.32 billion in constant FY2010 dollars.

Columbia schedule

An updated schedule for Columbia-class SSBN program was not included in the recent Navy announcements. Previously, the Navy identified the following milestones for the lead ship:

  • FY2017: Start advance procurement for lead ship
  • FY2021: Milestone C decision, which will enable the program to move into the Production and Deployment Phase and start construction of the lead ship
  • 2027: Deliver lead ship to the Navy
  • 2031: Lead ship ready to conduct 1st strategic deterrence patrol

Keeping the Columbia-class SSBN construction program on schedule is important to the nation’s, strategic deterrence capability. The first Ohio-class SSBNs are expected start retiring in 2029, two years before the first Columbia-class SSBN is delivered to the fleet. The net result of this poor timing will be a 6 – 7 year decline in the number of U.S. SSBNs from the current level of 14 SSBNs to 10 SSBNs in about 2032. The SSBN fleet will remain at this level for almost a decade while the last Ohio-class SSBNs are retiring and are being replaced one-for-one by new Columbia-class SSBNs. Finally, the U.S. SSBN fleet will reach its authorized level of 12 Columbia-class SSBNs in about 2042. This is about the same time when the Trident D5LE SLBMs arming the entire Columbia-class fleet will need to be replaced by a modern SLBM.

You can see the fleet size projections for all classes of Navy submarines in the following chart. The SSBN fleet is represented by the middle trend line.

Submarines-30-year-plan-2017 copy 2 Source: U.S. Navy 30-year Submarine Shipbuilding Plan 2017

Based on the Navy’s recent poor performance in other major new shipbuilding programs (Ford-class aircraft carrier, Nimitz-class destroyer, Littoral Combat Ship), their ability to meet the projected delivery schedule for the Columbia-class SSBN’s must be regarded with some skepticism. However, the Navy’s Virginia-class attack submarine (SSN) construction program has been performing very well, with some new SSNs being delivered ahead of schedule and below budget. Hopefully, the submarine community can maintain the good record of the Virginia-class SSNs program and deliver a similarly successful, on-time Columbia-class SSBN program.

Additional resources:

For more information, refer to the 25 October 2016 report by the Congressional Research Service, “Navy Columbia Class (Ohio Replacement) Ballistic Missile Submarine (SSBN[X]) Program: Background and Issues for Congress,” which you can download at the following link:

https://fas.org/sgp/crs/weapons/R41129.pdf

You can read the Navy’s, “Report to Congress on the Annual Long-Range Plan for Construction of Naval Vessels for Fiscal Year 2017,” at the following link:

https://news.usni.org/2016/07/12/20627

 

The Navy’s Troubled Littoral Combat Ship (LCS) Program is Delivering a Costly, Unreliable, Marginal Weapons System

The LCS program consists of two different, but operationally comparable ship designs:

  • LCS-1 Freedom-class monohull built by Marinette Marine
  • LCS-2 Independence-class trimaran built by Austal USA.

These relatively small surface combatants have full load displacements in the 3,400 – 3,900 ton range, making them smaller than most destroyer and frigate-class ships in the world’s navies.

lcs-1-and-lcs-2-web120502-n-zz999-009LCS-2 in foreground & LCS-1 in background. Source: U.S. NavyLCS-2-Indepenence-LCS-1-Freedom-7136872711_c3ddf9d43bLCS-1 on left & LCS-2 on right. Source: U.S. Navy

Originally LCS was conceived as a fleet of 52 small, fast, multi-mission ships designed to fight in littoral (shallow, coastal) waters, with roll-on / roll-off mission packages intended to give these ships unprecedented operational flexibility. In concept, it was expected that mission module changes could be conducted in any port in a matter of hours. In a 2010 Department of Defense (DoD) Selected Acquisition Report, the primary missions for the LCS were described as:

“…littoral surface warfare operations emphasizing prosecution of small boats, mine warfare, and littoral anti-submarine warfare. Its high speed and ability to operate at economical loiter speeds will enable fast and calculated response to small boat threats, mine laying and quiet diesel submarines. LCS employment of networked sensors for Intelligence, Surveillance, and Reconnaissance (ISR) in support of Special Operations Forces (SOF) will directly enhance littoral mobility. Its shallow draft will allow easier excursions into shallower areas for both mine countermeasures and small boat prosecution. Using LCS against these asymmetrical threats will enable Joint Commanders to concentrate multi-mission combatants on primary missions such as precision strike, battle group escort and theater air defense.”

Both competing firms met a Congressionally-mandated cost target of $460 million per unit, and, in December 2010, Congress gave the Navy authority to split the procurement rather than declare a single winner. Another unique aspect of the LCS program was that the Defense Acquisition Board split the procurement further into the following two separate and distinct programs with separate reporting requirements:

  • The two “Seaframe” programs (for the two basic ship designs)
  • The Mission Module programs (for the different mission modules needed to enable an LCS seaframe to perform specific missions)

When the end product is intended to be an integrated combatant vessel, you don’t need to be a systems analyst to know that trouble is brewing in the interfaces between the seaframes and the mission modules somewhere along the critical path to LCS deployment.

There are three LCS mission modules:

  • Surface warfare (SUW)
  • Anti-submarine (ASW)
  • Mine countermeasures (MCM)

These mission modules are described briefly below:

Surface warfare (SUW)

Each LCS is lightly armed since its design basis surface threat is an individual small, armed boat or a swarm of such boats. The basic anti-surface armament on an LCS seaframe includes a single 57 mm main gun in a bow turret and everal small (.50 cal) machine guns.  The SUW module adds twin 30mm Bushmaster cannons, an aviation unit, a maritime security module (small boats), and relatively short-range surface-to-surface missiles.

Each LCS has a hanger bay for its embarked aviation unit, which is comprised of one manned MH-60R Sea Hawk helicopter and one MQ-8B Fire Scout unmanned aerial vehicle (UAV, a small helicopter). As part of the SUW module, these aviation assets are intended to be used to identify, track, and help prosecute surface targets.

That original short-range missile collaboration with the Army failed when the Army withdrew from the program. As of December 2016, the Navy is continuing to conduct operational tests of a different Army short-range missile, the Longbow Hellfire, to fill the gap in the SUW module and improve the LCS’s capability to defend against fast inshore attack craft.

In addition to the elements of the SUW module described above, each LCS has a RIM-116 Rolling Airframe Missile (RAM) system or a SeaRAM system intended primarily for anti-air point defense (range 5 – 6 miles) against cruise missiles. A modified version of the RAM has limited capabilities for use against helicopters and nearby small surface targets.

In 2015, the Navy redefined the first increment of the LCS SUW capability as comprising the Navy’s Visit, Board, Search and Seizure (VBSS) teams. This limited “surface warfare” function is comparable to the mission of a Coast Guard cutter.

While the LCS was not originally designed to have a long-range (over the horizon) strike capability, the Navy is seeking to remedy this oversight and is operationally testing two existing missile systems to determine their suitability for installation on the LCS fleet. These missiles are the Boeing Harpoon and the Norwegian Konigsberg Naval Strike Missile (NSM). Both can be employed against sea and land targets.

Anti-submarine (ASW)

The LCS does not yet have an operational anti-submarine warfare (ASW) capability because of ongoing delays in developing this mission module.

The sonar suite is comprised of a continuously active variable depth sonar, a multi-function towed array sonar, and a torpedo defense sonar. For the ASW mission, the MH-60R Sea Hawk helicopter will be equipped with sonobuoys, dipping sonar and torpedoes for prosecuting submarines. The MQ-8B Fire Scout UAV also can support the ASW mission.

Use of these ASW mission elements is shown in the following diagram (click on the graphic to enlarge):

asw_lcsSource: U.S. Navy

In 2015, the Navy asked for significant weight reduction in the 105 ton ASW module.

Originally, initial operational capability (IOC) was expected to be 2016. It appears that the ASW mission package is on track for an IOC in late 2018, after completing development testing and initial operational test & evaluation.

Mine Countermeasures (MCM)

The LCS does not yet have an operational mine countermeasures capability. The original complex deployment plan included three different unmanned vehicles that were to be deployed in increments.

  • Lockheed Martin Remote Multi-mission Vehicle (RMMV) would tow a sonar system for conducting “volume searches” for mines
  • Textron Common Unmanned Surface Vehicle (CUSV) would tow minesweeping hardware.
  • General Dynamics Knifefish unmanned underwater vehicle would hunt for buried mines

For the MCM mission, the MH-60R Sea Hawk helicopter will be equipped with an airborne laser mine detection system and will be capable of operating an airborne mine neutralization system. The MQ-8B Fire Scout UAV also supports the MCM mission.

Use of these MCM mission elements is shown in the following diagram (click on the graphic to enlarge):

lcs_2013_draft_MCM-624x706Source: U.S. Navy

Original IOC was expected to be 2014. The unreliable RMMV was cancelled in 2015, leaving the Navy still trying in late 2016 to define how an LCS will perform “volume searches.” CUSV and Knifefish development are in progress.

It appears the Navy is not planning to conduct initial operational test & evaluation of a complete MCM module before late 2019 or 2020.

By January 2012, the Navy acknowledged that mission module change-out could take days or weeks instead of hours. Therefore, each LCS will be assigned a single mission, making module changes a rare occurrence. So much for operational flexibility.

LCS has become the poster child for a major Navy ship acquisition program that has gone terribly wrong.

  • The mission statement for the LCS is still evolving, in spite of the fact that 26 already have been ordered.
  • There has been significant per-unit cost growth, which is actually difficult to calculate because of the separate programmatic costs of the seaframe and the mission modules.
    • FY 2009 budget documents showed that the cost of the two lead ships had risen to $637 million for LCS-1 Freedom and $704 million for LCS-2
    • In 2009, Lockheed Martin’s LCS-5 seaframe had a contractual price of $437 million and Austal’s LCS-6’s seaframe contractual price was $432 million, each for a block of 10 ships.
    • In March 2016, General Accounting Office (GAO) reported the total procurement cost of the first 32 LCSs, which worked out to an average unit cost of $655 million just for the basic seaframes.
    • GAO also reported the total cost for production of 64 LCS mission modules, which worked out to an average unit cost of $108 million per module.
    • Based on these GAO estimates, a mission-configured LCS (with one mission module) has a total unit cost of about $763 million.
  • In 2016, the GAO found that, “the ship would be less capable of operating independently in higher threat environments than expected and would play a more limited role in major combat operations.”
  • The flexible mission module concept has failed. Each ship will be configured for only one mission.
  • Individual mission modules are still under development, leaving deployed LCSs without key operational capabilities.
  • The ships are unreliable. In 2016, the GAO noted the inability of an LCS to operate for 30 consecutive days underway without a critical failure of one or more essential subsystems.
  • Both LCS designs are overweight and are not meeting original performance goals.
  • There was no cathodic corrosion protection system on LCS-1 and LCS-2. This design oversight led to serious early corrosion damage and high cost to repair the ships.
  • Crew training time is long.
  • The original maintenance plans were unrealistic.
  • The original crew complement was inadequate to support the complex ship systems and an installed mission module.

To address some of these issues, the LCS crew complement has been increased, an unusual crew rotation process has been implemented, and the first four LCSs have been withdrawn from operational service for use instead as training ships.

To address some of the LCS warfighting limitations, the Navy, in February 2014, directed the LCS vendors to submit proposals for a more capable vessel (originally called “small surface combatant”, now called “frigate” or FF) that could operate in all regions during conflict conditions. Key features of this new frigate include:

  • Built-in (not modular) anti-submarine and surface warfare mission systems on each FF
  • Over-the-horizon strike capability
  • Same purely defensive (point defense) anti-air capability as the LCS. Larger destroyers or cruisers will provide fleet air defense.
  • Lengthened hull
  • Lower top speed and less range

As you would expect, the new frigate proposals look a lot like the existing LCS designs. In 2016, the GAO noted that the Navy prioritized cost and schedule considerations over the fact that a “minor modified LCS” (i.e., the new frigate) was the least capable option considered.”  The competing designs for the new frigate are shown below (click on the graphic to enlarge):

LCS-program-slides-2016-05-18Source: U.S. NavyLCS-program-slides-2016-05-18-austalSource: U.S. Navy

GAO reported the following estimates for the cost of the new multi-mission frigate and its mission equipment:

  • Lead ship: $732 – 754 million
  • Average ship: $613 – 631 million
  • Average annual per-ship operating cost over a 25 year lifetime: $59 – 62 million

Note that the frigate lead ship cost estimate is less than the GAO’s estimated actual cost of an average LCS plus one mission module. Based on the vendor’s actual LCS cost control history, I’ll bet that the GAO’s frigate cost estimates are just the starting point for the cost growth curve.

To make room for the new frigate in the budget and in the current 308-ship fleet headcount limit, the Navy reduced the LCS buy to 32 vessels, and planed to order 20 new frigates from a single vendor. In December 2015, the Navy reduced the total quantity of LCS and frigates from 52 to 40. By mid-2016, Navy plans included only 26 LCS and 12 frigates.

A lot of other resources are available on the internet describing the LCS program, early LCS operations, the new LCS-derived frigate program, and other international frigates programs. For more information, I recommend the following recent (all in 2016) resources listed below.

2016 Congressional Research Service report to Congress

On 14 June 2016, the Congressional Research Service released their report, “Navy Littoral Combat Ship (LCS)/Frigate Program: Background and Issues for Congress.” You can download this report at the following link:

https://fas.org/sgp/crs/weapons/RL33741.pdf

2016 General Accounting Office (GAO) report

Also in June 2016, the GAO issued their report, “Need to Address Fundamental Weaknesses in LCS and Frigate Acquisition Strategies.” You can download this report at the following link:

http://www.gao.gov/assets/680/677764.pdf

2016 Breaking Defense e-book

The website Breaking Defense (http://breakingdefense.com) is an online magazine that offers defense industry news, analysis, debate, and videos. In November 2016, they offered a free eBook that collects their coverage of the Navy’s LCS program.

Littoral-combat-ship-ebook

You can get this free e-book by completing a short form and placing your order at the following link:

http://info.breakingdefense.com/littoral-combat-ship-ebook?utm_source=hs_email&utm_medium=email&utm_content=38631542&_hsenc=p2ANqtz-_L_ED_Z-ntZXQxn4FnUVDP7_Wmq9jSSz8yK5AOHidUciPcHXAM2emR1lG-8-wen7e6fqZ1otft9_JlbYaaRXdJ25zH2w&_hsmi=38631542

2016 Top Ten Most Powerful Frigates in the World

To see what international counterparts the LCS and FF are up against, check out the January 2016 article, “Top Ten Most Powerful Frigates in the World,” which includes frigates typically in the 4,000 to 6,900 ton range (larger than LCS). You’ll find this at the following link:

https://defencyclopedia.com/2016/01/02/top-10-most-powerful-frigates-in-the-world/

There are no U.S. ships in this top 10.

So what do you think?

  • Are the single-mission LCSs really worth the Navy’s great investment in the LCS program?
  • Will the two-mission FFs give the Navy a world-class frigate that can operate independently in contested waters?
  • Would you want to serve aboard an LCS or FF when the fighting breaks out, or would you choose one of the multi-mission international frigates?

Cruise Liner Crystal Serenity is Navigating the Northwest Passage Now

Background:

The Northwest Passage connects the Pacific and Atlantic Oceans via an Arctic sea route along the north coasts of Alaska and Canada. The basic routes are shown in the following map.

The Northwest Passage connects the Pacific and Atlantic Oceans via an Arctic sea route along the north coasts of Alaska and Canada. The basic routes are shown in the following map.

Northwest PassageSource: Encyclopedia Britannica

While it has been common for icebreakers, research vessels and nuclear submarines to operate in these waters, it is quite uncommon for commercial or private vessels to attempt to navigate the Northwest Passage.

The first recorded transit of the Northwest Passage was made in 1903 – 06 by the famous Norwegian polar explorer Roland Amundsen in the ship Gjoa.

Amundsens ship GjoaAmundsen’s ship Gjoa. Source: Underwood Archives/UIG/Everett Collection

Since then, there have been many full transits of the Northwest Passage. You’ll find John MacFarlane’s list of 126 transits for the period from 1903 – 2006 on the Nauticapedia website at the following link:

http://www.nauticapedia.ca/Articles/NWP_Fulltransits.php

Notable Northwest Passage transits by commercial and private vessels

In August 1969, the heavily modified oil tanker SS Manhattan, chartered by Humble Oil & Refining Company, became the first commercial vessel to navigate the Northwest Passage. At the time, the SS Manhattan was the largest U.S. merchant vessel, with a length of 1,005 feet (306 meters), beam of 148 feet (45 meters), draft of 52 feet (16 meters), and a displacement of 115,000 tons. Total installed power was 43,000 shaft horsepower (32,000 kW).

THE MANHATTAN SS Manhattan and CCGS Louis S. St-Laurent. Source: Associated Press

Prior to the Arctic voyage, the SS Manhattan was fitted with an icebreaking bow and heavy steel sheathing along both sides of the hull and in other vulnerable locations to protect against ice. The specific route of the SS Manhattan, from the Atlantic to Prudhoe Bay and then back to the Atlantic, is shown below. Several U.S. and Canadian icebreakers supported the SS Manhattan during its voyage.

Manhattan route 1969Source: NOAA, Susie Harder – Arctic Council – Arctic marine shipping assessment (AMSA)

Oil was discovered at Prudhoe Bay in 1968. A barrel of crude oil was loaded on SS Manhattan in Prudhoe Bay to symbolize that supertankers operating in the Arctic could serve the newly discovered oil field. Further testing that winter off Baffin Island showed that year-round oil tanker operations in the Arctic were not feasible. Instead, the Trans-Alaska Pipeline from Prudhoe Bay to Valdez, Alaska was built.

In 2007, the Northwest Passage became ice-free and navigable along its entire length without the need for an icebreaker for 36 days during August and September. During that period, the sailing vessel Cloud Nine passed through the Northwest Passage during its 6,640 mile, 73 day transit from the Atlantic to the Pacific. You can read David Thoreson’s blog about this Arctic voyage, Sailing the Northwest Passage, at the following link:

http://davidthoreson.blogspot.com/2007/09/completing-northwest-passage-2007.html

This voyage was a remarkable achievement for a small vessel. In his blog, David Thoreson commented:

“I feel strongly that we have witnessed the end of an era and the beginning of a new one. The golden age of exploration, Amundsen’s era, has come to a close, and a new era of exploration involving study and change in the earth’s climate is just beginning. We on Cloud Nine have experienced both eras. Frozen in and stuck in the ice twice over 13 years, and now sailing through unscathed and witnessing an ice-free Northwest Passage. We have bridged the two eras.”

Are we seeing the start of tourism in the Northwest Passage?

On 10 August 2016, Crystal Serenity departed Vancouver for Seward Alaska and the start of what is scheduled to be a 32-day voyage to New York City via the Northwest Passage. The ship is scheduled to arrive in NYC on 16 September 2016. The planned route for this cruise is shown below.

nwp-map-300-dpiSource: Crystal Cruises

The Crystal Serenity is smaller than SS Manhattan, but still is a fairly big ship, with a length of 820 feet (250 meters), beam of 106 feet (32.3 meters), draft of 25 feet (7.6 meters), and a displacement of 68,870 tons. On this voyage, Capt. Birger Vorland and two Canadian pilots will navigate the Northwest Passage with more than 1,600 passengers and crew.

Crystal Serenity will be accompanied by the icebreaking escort vessel RRS (Royal Research Ship) Ernest Shackleton, which was chartered by Crystal Cruises for this support cruise. Along the planned route, there are few ports that can accommodate a vessel the size of Crystal Serenity. Along most of the route emergency response capabilities are quite limited. Therefore, RRS Shackleton is equipped to serve as a first response vessel in the event of an emergency aboard Crystal Serenity. RRS Shackleton also carries two helicopters and additional crew to support special adventures during the cruise.

Crystal Serenity at Seward AlaskaCrystal Serenity in Seward, Alaska. Source: NPR.com, Rachel Waldholz/Alaska Public Radio

You can find a current report on the sea ice extent along the Northwest Passage at the National Snow and Ice Data Center’s website at the following link:

http://nsidc.org/arcticseaicenews/

The ice extent report today is shown in the following chart, which shows that the current ice extent is well below the 1981 – 2010 median. However, there appear to be sections of the Northwest Passage around Banks and Victoria Islands that are still covered by the Arctic ice pack. Crystal Serenity is scheduled to be in these waters soon.

Ice extent 28Aug2016Source: National Snow and Ice Data Center

You can track the current position of the Crystal Serenity as it makes its historic voyage at the following link:

http://www.cruisemapper.com/Crystal-Serenity-location?imo=9243667

As of 5:50 PM PDT, 29 August 2016, the ship is approaching Barrow, Alaska, as shown on the following map.

Location of Crystal Serenity 29Aug16Source: cruisemapper.com

A second cruise already is planned for 2017. You can book your Northwest Passage cruise on the Crystal Cruises website at the following link:

http://www.crystalcruises.com/northwest-passage-cruise

Update 24 September 2016: Mission accomplished!

On 16 September, the Crystal Serenity became the first cruise liner ever to transit the Northwest Passage. The west – east passage from Seward, Alaska to New York City took 32 days and covered 7,297 nautical miles (13,514 km).

Crystal Serenity Arrives in New York after Historic Northwest Passage VoyageCrystal Serenity arrives in NYC. Source: Crystal Cruises

Wave Glider Autonomous Vehicle Harvests Wave and Solar Power to Deliver Unique Operational Capabilities at Sea

The U.S. firm Liquid Robotics, Inc., in Sunnyvale, CA, designs, manufactures, and sells small unmanned surface vehicles (USVs) called Wave Gliders, which consist of two parts: an underwater “glider” that provides propulsion and a surface payload vehicle that houses electronics and a solar-electric power system. The physical arrangement of a Wave Glider is shown in the following diagrams. The payload vehicle is about 10 feet (305 cm) long. The glider is about 7 feet (213 cm) long and is suspended about 26 feet (800 cm) below the payload vehicle.

Wave Glider configurationSource: Liquid Robotics. Note: 800 cm suspension distance is not to scale.

The payload vehicle is topped with solar panels and one or more instrumentation / communication / navigation masts. The interior modular arrangement of a Wave Glider is shown in the following diagram. Wave Glider is intended to be an open, extensible platform that can be readily configured for a wide range of missions.

Wave Glider configuration 2Source: Liquid Robotics

The Wave Glider is propelled by wave power using the operational principle for wave power harvesting shown in the following diagram. Propulsion power is generated regardless of the heading of the Wave Glider relative to the direction of the waves, enabling sustained vehicle speeds of 1 to 3 knots.

Wave Glider propulsion schemeSource: Liquid Robotics

The newer SV3 Wave Glider has a more capable electric power system than its predecessor, the SV2, enabling the SV3 glider to be equipped with an electric motor-driven propeller for supplementary solar-electric propulsion. SV3 also is capable of towing and supplying power to submerged instrument packages.

Autonomous navigation and real-time communications capabilities enable Wave Gliders to be managed individually or in fleets. The autonomous navigation capability includes programmable course navigation, including precise hold-station capabilities, and surface vessel detection and avoidance.

Originally designed to monitor whales, the Wave Glider has matured into a flexible, multi-mission platform for ocean environmental monitoring, maritime domain awareness / surveillance, oil and gas exploration / operations, and defense.

More information and short videos on the operation of the Wave Glider are available on the Liquid Robotics website at the following link:

http://www.liquid-robotics.com/platform/overview/

On 28 April 2016, the U.S. Navy announced that it was in the process of awarding Liquid Robotics a sole-source contract for Wave Glider USV hardware and related services. You can read the Notice of Intent at the following link:

https://www.fbo.gov/index?s=opportunity&mode=form&id=6abb899b3e3286bfcd861fc5dedfdb65&tab=core&_cview=0

As described by the Navy:

“The required USV is a hybrid sea-surface USV comprised of a submerged ‘glider’ that is attached via a tether to a surface float. The vehicle is propelled by the conversion of ocean wave energy into forward thrust, independent of wave direction. No electrical power is generated by the propulsion mechanism.”

Navy requirements for the Wave Glider USV include the following:

  • Mission: Capable of unsupported autonomous missions of up to ten months duration, with long distance transits of up to 1,000 nautical miles in the open ocean
  • Propulsion: Wave power harvesting at all vehicle-to-wave headings, with sustained thrust adequate under own propulsion sufficient to tow significant loads
  • Electric Power: Solar energy harvesting during daylight hours, with power generation / storage capabilities sufficient to deliver ten watts to instrumentation 24/7
  • Instrumentation: Payload of 20 pounds (9.1 kg)
  • Navigation: Commandable vehicle heading and autonomous on-board navigation to a given and reprogrammable latitude/longitude waypoint on the ocean’s surface
  • Survivability: Sea states up to a rating of five and winds to 50 knots
  • Stealth: Minimal radar return, low likelihood of visual detectability, minimal radiated acoustic noise

In my 11 April 2016 post, I discussed how large autonomous surface and underwater vehicles will revolutionize the ways in which the U.S. Navy conducts certain operational missions. Wave Glider is at the opposite end of the autonomous vehicle size range, but retains the capability to conduct long-duration, long-distance missions. It will be interesting to see how the Navy employs this novel autonomous vehicle technology.

Large Autonomous Vessels will Revolutionize the U.S. Navy

In this post, I will describe two large autonomous vessels that are likely to revolutionize the way the U.S. Navy operates. The first is the Sea Hunter, sponsored by Defense Advanced Projects Agency (DARPA), and the second is Echo Voyager developed by Boeing.

DARPA Anti-submarine warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV)

ACTUV conceptSource: DARPA

DARPA explains that the program is structured around three primary goals:

  • Demonstrate the performance potential of a surface platform conceived originally as an unmanned vessel.
    • This new design paradigm reduces constraints on conventional naval architecture elements such as layout, accessibility, crew support systems, and reserve buoyancy.
    • The objective is to produce a vessel design that exceeds state-of-the art manned vessel performance for the specified mission at a fraction of the vessel size and cost.
  •  Advance the technology for unmanned maritime system autonomous operation.
    • Enable independently deploying vessels to conduct missions spanning thousands of kilometers of range and months of duration under a sparse remote supervisory control model.
    • This includes autonomous compliance with maritime laws and conventions for safe navigation, autonomous system management for operational reliability, and autonomous interactions with an intelligent adversary.
  • Demonstrate the capability of an ACTUV vessel to use its unique sensor suite to achieve robust, continuous track of the quietest submarine targets over their entire operating envelope.

While DARPA states that ACTUV vessel is intended to detect and trail quiet diesel electric submarines, including air-independent submarines, that are rapidly proliferating among the world’s navies, that detect and track capability also should be effective against quiet nuclear submarines. The ACTUV vessel also will have capabilities to conduct counter-mine missions.

The ACTUV program is consistent with the Department of Defense (DoD) “Third Offset Strategy,” which is intended to maintain U.S. military technical supremacy over the next 20 years in the face of increasing challenges from Russia and China. An “offset strategy” identifies particular technical breakthroughs that can give the U.S. an edge over potential adversaries. In the “Third Offset Strategy”, the priority technologies include:

  • Robotics and autonomous systems: capable of assessing situations and making decisions on their own, without constant human monitoring
  • Miniaturization: enabled by taking the human being out of the weapons system
  • Big data: data fusion, with advanced, automated filtering / processing before human involvement is required.
  • Advanced manufacturing: including composite materials and additive manufacturing (3-D printing) to enable faster design / build processes and to reduce traditionally long supply chains.

You can read more about the “Third Offset Strategy” at the following link:

http://breakingdefense.com/2014/11/hagel-launches-offset-strategy-lists-key-technologies/

You also may wish to read my 19 March 2016 post on Arthur C. Clarke’s short story “Superiority.” You can decide for yourself if it relates to the “Third Offset Strategy.”

Leidos (formerly SAIC) is the prime contractor for the ACTUV technology demonstrator vessel, Sea Hunter. In August 2012, Leidos was awarded a contract valued at about $58 million to design, build, and operationally test the vessel.

In 2014, Leidos used a 32-foot (9.8 meter) surrogate vessel to demonstrate the prototype maritime autonomy system designed to control all maneuvering and mission functions of an ACTUV vessel. The first voyage of 35 nautical miles (65.8 km) was conducted in February 2014. A total of 42 days of at-sea demonstrations were conducted to validate the autonomy system.

Sea Hunter is an unarmed 145-ton full load displacement, diesel-powered, twin-screw, 132 foot (40 meters) long, trimaran that is designed to a wide range of sea conditions. It is designed to be operational up to Sea State 5 [moderate waves to 6.6 feet (2 meters) height, winds 17 – 21 knots] and to be survivable in Sea State 7 [rough weather with heavy waves up to 20 feet (6 meters) height]. The vessel is expected to have a range of about 3,850 miles (6,200 km) without maintenance or refueling and be able to deploy on missions lasting 60 – 90 days.

Sea Hunter side view cropSource: DARPA

Raytheon’s Modular Scalable Sonar System (MS3) was selected as the primary search and detection sonar for Sea Hunter. MS3 is a medium frequency sonar that is capable of active and passive search, torpedo detection and alert, and small object avoidance. In the case of Sea Hunter, the sonar array is mounted in a bulbous housing at the end of a fin that extends from the bottom of the hull; looking a bit like a modern, high-performance sailboat’s keel.

Sea Hunter will include sensor technologies to facilitate the correct identification of surface ships and other objects on the sea surface. See my 8 March 2015 post on the use of inverse synthetic aperture radar (ISAR) in such maritime surveillance applications.

During a mission, an ACTUV vessel will not be limited by its own sensor suit. The ACTUV vessel will be linked via satellite to the Navy’s worldwide data network, enabling it to be in constant contact with other resources (i.e., other ships, aircraft, and land bases) and to share data.

Sea Hunter was built at the Vigor Shipyard in Portland, Oregon. Construction price of the Sea Hunter is expected to be in the range from $22 to $23 million. The target price for subsequent vessels is $20 million.

You can view a DARPA time-lapse video of the construction and launch of Sea Hunter at the following link:

http://www.darpa.mil/attachments/ACTUVTimelapseandWalkthrough.mp4

Sea Hunter launch 1Source: DARPA

Sea Hunter lauunch 2Source: DARPA

In the above photo, you can see on the bottom of the composite hull, just forward of the propeller shafts, what appears to be a hatch. I’m just speculating, but this may be the location of a retractable sonar housing, which is shown in the first and second pictures, above.

You can get another perspective of the launch and the subsequent preliminary underway trials in the Puget Sound in the DARPA video at the following link:

http://www.darpa.mil/attachments/ACTUVTimelapseandWalkthrough.mp4

During the speed run, Sea Hunter reached a top speed of 27 knots. Following the preliminary trials, Sea Hunter was christened on 7 April 2016. Now the vessel starts an operational test phase to be conducted jointly by DARPA and the Office of Naval Research (ONR). This phase is expected to run through September 2018.

DARPA reported that it expects an ACTUV vessel to cost about $15,000 – $20,000 per day to operate. In contrast, a manned destroyer costs about $700,000 per day to operate.

The autonomous ship "Sea Hunter", developed by DARPA, is shown docked in Portland, Oregon before its christening ceremonySource: DARPA

You can find more information on the ACTUV program on the DARPA website at the following link:

http://www.darpa.mil/news-events/2016-04-07

If ACTUV is successful in demonstrating the expected search and track capabilities against quiet submarines, it will become the bane of submarine commanders anywhere in the world. Imagine the frustration of a submarine commander who is unable to break the trail of an ACTUV vessel during peacetime. During a period of conflict, an ACTUV vessel may quickly become a target for the submarine being trailed. The Navy’s future conduct of operations may depend on having lots of ACTUV vessels.

Echo Voyager Unmanned Underwater Vehicle (UUV)

Echo Explorer - front quarter viewSource: BoeingEcho Explorer - top openSource: Boeing

Echo Voyager is the third in a family of UUVs developed by Boeing’s Phantom Works. The first two are:

  • Echo Ranger (circa 2002): 18 feet (5.5 meters) long, 5 tons displacement; maximum depth 10,000 feet; maximum mission duration about 28 hours
  • Echo Seeker (circa 2015): 32 feet (9.8 meter) long; maximum depth 20,000 feet; maximum mission duration about 3 days

Both Echo Ranger and Echo Seeker are battery powered and require a supporting surface vessel for launch and recovery at sea and for recharging the batteries. They successfully have demonstrated the ability to conduct a variety of autonomous underwater operations and to navigate safely around obstacles.

Echo Voyager, unveiled by Boeing in Huntington Beach, CA on 10 March 2016, is a much different UUV. It is designed to deploy from a pier, autonomously conduct long-duration, long-distance missions and return by itself to its departure point or some other designated destination. Development of Echo Voyager was self-funded by Boeing.

Echo Voyager is a 50-ton displacement, 51 foot (15.5 meters) long UUV that is capable of diving to a depth of 11,000 feet (3,352 meters). It has a range of about 6,500 nautical miles (12,038 km) and is expected to be capable of autonomous operations for three months or more. The vessel is designed to accommodate various “payload sections” that can extend the length of the vessel up to a maximum of 81 feet (24.7 meters).

You can view a Boeing video on the Echo Voyager at the following link:

https://www.youtube.com/watch?v=L9vPxC-qucw

The propulsion system is a hybrid diesel-electric rechargeable system. Batteries power the main electric motor, enabling a maximum speed is about 8 knots. Electrically powered auxiliary thrusters can be used to precisely position the vessel at slow speed. When the batteries require recharging,

The propulsion system is a hybrid diesel-electric rechargeable system. Batteries power the main electric motor, enabling a maximum speed is about 8 knots. Electrically powered auxiliary thrusters can be used to precisely position the vessel at slow speed. When the batteries require recharging, Echo Voyager will rise toward the surface, extend a folding mast as shown in the following pictures, and operate the diesel engine with the mast serving as a snorkel. The mast also contains sensors and antennae for communications and satellite navigation.

Echo Explorer - mast extendingSource: screenshot from Boeing video at link aboveEcho Explorer - snorkelingSource: screenshot from Boeing video at link above

The following image, also from the Boeing video, shows deployment of a payload onto the seabed.Echo Explorer - emplacing on seabedSource: screenshot from Boeing video at link above

Sea trials off the California coast are expected in mid-2016.

Boeing currently does not have a military customer for Echo Voyager, but foresees the following missions as being well-suited for this type of UUV:

  • Surface and subsurface intelligence, surveillance, and reconnaissance (ISR)
  • ASW search and barrier patrol
  • Submarine decoy
  • Critical infrastructure protection
  • Mine countermeasures
  • Weapons platform

Boeing also expects civilian applications for Echo Voyager in offshore oil and gas, marine engineering, hydrography and other scientific research.

28 July 2016 update: Sea Hunter ACTUV performance testing

On 1 May 2016, Sea Hunter arrived by barge in San Diego and then started initial performance trial in local waters.

ACTUV in San Diego BaySource: U.S. Navy

You can see a video of Sea Hunter in San Diego Bay at the following link:

https://news.usni.org/2016/05/04/video-navys-unmanned-sea-hunter-arrives-in-san-diego

On 26 July 2016, Leidos reported that it had completed initial performance trials in San Diego and that the ship met or surpassed all performance objectives for speed, maneuverability, stability, seakeeping, acceleration, deceleration and fuel consumption. These tests were the first milestone in the two-year test schedule.

Leidos indicated that upcoming tests will exercise the ship’s sensors and autonomy suite with the goals of demonstrating maritime collision regulations compliance capability and proof-of-concept for different Navy missions

The Sad State of Affairs of the U.S. Icebreaking Fleet and Implications for Future U.S. Arctic Operations

On 1 Sep 2015, while visiting Alaska, President Obama announced that he would speed up the acquisition of icebreakers to help the U.S. Coast Guard (USCG) operate in the Arctic. A Congressional Research Service report entitled, Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress, was issued on 2 Sep 2015.  You can download this report at the following link:

https://www.fas.org/sgp/crs/weapons/RL34391.pdf

This report asserts that a new heavy polar icebreaker will cost in the range from $900 million to $1.1 billion.  The report also provides an interesting history of prior USCG assessments  of their icebreaker needs and  budget actions taken over the past few years that significantly reduced the budget available to pursue new icebreaker acquisition.

Role of the National Science Foundation

In 2006, the G.W. Bush administration moved budget and management authority for the U.S. polar icebreaker fleet from the USCG to the National Science Foundation (NSF). The USCG retained custody of the polar icebreakers, which continue to be operated by USCG crews. This arrangement is recorded in the following 2006 document: Memorandum of Agreement Between United States Coast Guard and National Science Foundation Regarding Polar Icebreaking Support and Reimbursement. You can read the details of this convoluted agreement at the following link:

https://www.nsf.gov/geo/plr/opp_advisory/briefings/oct2005/2005_uscgnsf_moa.pdf

The current U.S. polar icebreaker fleet

Currently the entire U.S. national capability for Arctic and Antarctic icebreaking operations is found in a very small icebreaking fleet consisting of:

  • One heavy polar icebreaker, Coast Guard Cutter Polar Star
    • Commissioned in 1976
    • Displacement: 13,194 tons
    • Horsepower: 75,000 hp (gas turbines) + 18,000 hp (diesels)
  • One medium polar icebreaker, Coast Guard Cutter Healy
    • Commissioned in 1999
    • Displacement: 16,000 tons
    • Horsepower: 30,000 (diesels)
  • Some ice-capable tugs and tenders

In addition to this active “fleet”, the U.S. also has an inactive heavy polar icebreaker; the  Polar Sea (sister ship of Polar Star), which was commissioned in 1978 and placed in inactive commission in Seattle, WA in 2010 after a major propulsion plant equipment casualty. A 2013 USCG analysis, required by Congress to forestall the planned scrapping of the Polar Sea, showed that Polar Sea could be rehabilitated and reactivated for a fraction of the cost of building a new icebreaker. Polar Sea remains in inactive commission.

Polar Star_Polar SeaSource: Wikipedia

Polar Star & Polar Sea together in happier days.

In 2006, NSF put Polar Star in caretaker status due to equipment aging / wear-out issues. The ship originally was designed for a 30 year operating life.  After a modest refurbishment, the ship returned to Antarctic service in late 2013. Polar Star is expected to continue operating until about 2020.

After Polar Sea suffered its major propulsion system casualty in 2010, and until the Polar Star returned to service in late 2013, the medium icebreaker Healy was the only active U.S. polar icebreaker.

In February 2015, the USCG reported that it needed three heavy and three medium icebreakers to cover the U.S. “anticipated needs” in the Arctic and Antarctic. Six different U.S. agencies have missions in Polar regions.

U.S. Coast Guard’s 2013 Review of Major Icebreakers of the World is a chart that provides a good visual representation of the world’s icebreaker fleets. This chart is reproduced below, but you may need to go to the following link to see a more readable and downloadable pdf version of this  chart:

https://www.uscg.mil/hq/cg5/cg552/docs/20130718%20Major%20Icebreaker%20Chart.pdf

Icebreakers

The icons in this chart for the U.S. icebreaker fleet include the Polar Star, Polar Sea (inactive) and Healy, as expected. The other two vessels are:

  • Nathaniel B. Palmer, a privately owned, ice capable research ship leased by NSF to support Antarctic science missions.
  • Aiviq, a privately owned icebreaking, anchor-handling tug supply vessel chartered by Royal Dutch Shell to support their oil exploration activities in the Chukchi Sea off Alaska.

So, really, the U.S. currently only has two polar icebreakers. One typically serves the Antarctic and one serves the Arctic.  In 2013, the USCG got approval too explore developing a new heavy-duty icebreaker.  In mid-2015, the USCG website reports:

“The Coast Guard is in the preliminary phase of a new, heavy polar icebreaker acquisition program. This stage in the process includes developing a formal mission need statement, a concept of operations, and an operational requirements document – all necessary before developing and implementing a detailed acquisition plan.”

Russia’s polar icebreaker fleet

In comparison, the USCG’s 2013 chart shows that Russia fields almost 40 icebreakers with up to a dozen more planned or under construction. Russia has national plans to exploit its Arctic resources along the Northern Sea Route, which passes through the Arctic Ocean along the north coast of Russia. Nuclear-powered icebreakers play important roles in those plans.

The first of the new LK-60 nuclear-powered heavy polar icebreakers, Arktika, is under construction in St. Petersburg’s Baltic Shipyard and is expected to enter service in 2017. Its icebreaking bow was installed in August 2015.

LK-60_Arktika-bow_Aug2015 Source: http://bellona.org/

Contracts for two additional LK-60-class icebreakers were placed in May 2014. They are scheduled for delivery in 2019 and 2020.

U.S. Navy Arctic Roadmap 2014 – 2030

The recently published U.S. Navy Arctic Roadmap 2014 – 2030 includes the following observations:

  • U.S. Navy expects the Arctic “to remain a low threat security environment where nations resolve differences peacefully.”
  • It sees its role as mostly a supporter of U.S. Coast Guard (USCG) operations and responder to search-and-rescue and disaster situations.
  • However, the presence of vast resource endowments and territorial disagreements “contributes to a possibility of localized episodes of friction in the Arctic Region, despite the peaceful intentions of the Arctic nations.”
  • “Navy functions in the Arctic Region are not different from those in other maritime regions; however, the Arctic Region environment makes the execution of many of these functions much more challenging.”

Regarding the first and third points, above, Russian activities in the Arctic during the past year suggest that the U.S. Navy has underestimated, at least publically, the likelihood of non-peaceful actions in the Arctic and the potential need for a military response in the region. Recent Russian activities in the Arctic highlight this risk.

Given the poor state of the U.S. polar icebreaker fleet, I would say that the last point, above, is a gross understatement. The USCG and the Navy are not well-positioned for surface operations in the Arctic Ocean. Surface naval operations in ice-covered Arctic regions will be almost impossible to execute without a capable U.S. icebreaker fleet.

You can download a copy of the Navy’s Arctic Roadmap at the following link:

http://www.navy.mil/docs/USN_arctic_roadmap.pdf

Examples of worrisome recent Russian activities in the Arctic are:

  • Since early 2014, Russia has been conducting bomber and fighter missions close to the airspace of its Arctic neighbors.  This kind of military behavior has not been seen since the Cold War ended in the early 1990s.
  • 1 December 2014: Russia’s new Arctic Joint Strategic Command became operational. This provides central management of all Russian military resources in the Arctic, and there are a lot of them. The new command, based on the Northern Fleet and headquartered at Severomorsk, will acquire military, naval surface and strategic nuclear subsurface, air force and aerospace defense units, assets, and bases transferred from other Russian Military Districts
  • 15 – 20 March 2015: Russia conducted a massive, five-day military exercise in the Arctic involving about 80,000 troops, 220 aircraft, 41 ships, and 15 submarines. This exercise was conducted on the one-year anniversary of the Russian annexation of Crimea.
  • 4 August 2015: Russia’s Foreign Ministry confirmed that Russia had re-submitted to the United Nations it’s Arctic extended continental shelf claim. Russia is seeking recognition for its formal economic control of 1.2 million square kilometers (463,320 square miles) of Artic sea shelf extending more than 350 nautical miles from the shore.

The new U.S. Arctic Executive Steering Committee

In contrast to  Russia’s new Arctic Joint Strategic Command, President Obama issued an Executive Order in 15 January 2015 setting up the Arctic Executive Steering Committee, which will be responsible for enhancing coordination of national efforts in the Arctic.  How this new Steering Committee will affect progress on revitalizing the U.S. polar icebreaker fleet remains to be seen. You can read the full text of this Executive Order at the following link:

https://www.whitehouse.gov/the-press-office/2015/01/21/executive-order-enhancing-coordination-national-efforts-arctic

The bottom line

The U.S. is well behind the power curve for conducting operations in the Arctic that require icebreaker support.  Even with a well-funded new U.S. icebreaker construction program, it will take a decade before the first new ship is ready for service, and by that time, the new ship will be entering the fleet just as the  Polar Star is retiring or entering a comprehensive life-extension refurbishment program.

If you find yourself icebound in the Arctic anytime in the next decade, I think your best bet is to call the Canadians or the Russians for help.

5 February 2016 update:

In mid-January 2016, former Coast Guard Commandant Adm. Bob Papp made the following points at the annual Surface Navy Association meeting near Washington D.C.:

  • The U.S. will need eight icebreakers if it decides to have one patrolling in each polar region at all times.  The Coast Guard has never been able to support that high an operational tempo.
  • U.S. Arctic policy is a matter of national security; not just a matter of defense. The State Department’s vision focuses as well on sovereign rights and responsibilities of Arctic nations, maritime safety, energy, economic interests, environmental stewardship, scientific research and support to indigenous peoples.
  • More icebreakers are essential, because the U.S. can’t support its policies without being physically able to move about in the polar regions.

Read more details at the following link:

http://www.navytimes.com/story/military/2016/01/15/coast-guard-needs-8-icebreakers-cover-polar-regions-retired-4-star/78749864/

The current Coast Guard Commandant, Adm. Paul Zukunft, has stated that the schedule for the new icebreaker procurement program calls for a contract award for one icebreaker by fall 2019, with production beginning in 2020. Initial operational capability for this first new icebreaker would not be until the mid-2020s.  A Federal Business Opportunity (FBO) notice for the USCG Polar Icebreaker Replacement Program was posted online on 13 January 2016.  You can read the FBO notice and download the industry data package at the following link:

https://www.fbo.gov/index?s=opportunity&mode=form&id=68bf40747603b6acecc73e5ccc2974b6&tab=core&_cview=1

Well, this is a start.  When the new icebreaker enters the Coast Guard fleet and Polar Star retires after about 50 years of operation, the U.S. still will have only two polar icebreakers.

Spearhead-class Joint High-speed Vessel (JHSV) Provides the Navy with an Express Delivery Service

Along San Diego Bay, you’ll see a great variety of military and civilian vessels. The San Diego Port District has posted a chart on Shelter Island to help tourists and locals identify the more common types of Navy ships that are based here. Occasionally, you might be treated to the sight of an uncommon vessel, such as the catamaran USNS Minninocket (JHSV-3), shown below. This ship is owned and operated for the Navy by the Military Sealift Command.

JHSV-3 pic 1 Source: Author

JHSV-3 pic 2 Source: Author

JHSV ships are fast, modest-sized, non-combatant vessels designed to transport about 600 tons troops and equipment. Their modular design enables rapid reconfiguration of the 20,000-ft2 cargo bay to support various missions. For example, a JHSV vessel can accommodate an Army or Marine Corps company-sized unit (typically 80 – 250 troops) and vehicles, or be reconfigured to transport up to 312 troops.

The vessel has a length of 338′ (103 m), a beam of 93’ 6” (28.5 m), and a draft of 12’ 7” (3.83 m), and a displacement of about 2,400 tons. The catamaran design of the hull and the location of the large cargo deck are evident in the following pictures:

JHSV hull Source: U.S. Navy

JHSV multi view Source: U.S. Navy

Ship propulsion is provided by four 12,200 hp (9.1 MW) diesel engines in the catamaran pods driving waterjets that deliver a maximum speed of about 43 kts. Range is about 1,200 miles at 35 kts. The ship has facilities for one helicopter. As of the FY 2015 budget, 11 JHSVs have been funded.

You can read a summary of this Navy ship program, including the status of resolving FY 2013 and FY 2014 recommendations for improvement and new FY 2015 recommendations, at the following link:

http://www.dote.osd.mil/pub/reports/FY2015/pdf/navy/2015jhsv.pdf

You can watch a short video on this intriguing vessel at the following link:

https://www.youtube.com/watch?v=aWRNIXNGGjA

In 2016, the Navy plans to conduct shipboard tests of the BAE Systems prototype electromagnetic railgun aboard USNS Trenton (JHSV-5), including live firing GPS-guided hyper-velocity projectiles (HVP) at targets 20 miles or more away. While the JHSV is a non-combatant, it was chosen for this test program because of the availability of adequate space in the cargo hold and topside for the prototype weapon system. An artist rendering of the planned railgun installation is shown below.

JHSV railgun Source: U.S. Navy

4 September 2015 update:  Joint High-speed Vessel (JHSV) redesigned Expeditionary Fast Transport (EPF) 

Now there’s a new root designator for U.S. Navy vessels: “E” for “expeditionary support.”

Navy Secretary Ray Mabus and  Adm. Jon Greenert, Chief of Naval Operations,  changed the designations of three kinds of ships to the new expeditionary support category.  The JHSV joint high-speed vessels will become EPF, for expeditionary fast transport.

16 Feb 2016 Update: EPFs require structural upgrades to cope with heavy seas; operational suitability in question

The Navy has contracted for 10 of the shallow-draft Expeditionary Fast Transports (EPFs) from Austal USA, which constructs these ships at its Mobile, AL shipyard. Five EPFs have been delivered and have made deployments to Africa, the Middle East and the Far East. The 6th ship, USNS Brunswick, was just delivered to the Navy on 14 January 2016. Four more ships (EPF-7 to EPF-10) remain to be delivered under the current contract. EPF-11 and -12 have been funded by Congress in the 2015 and 2016 omnibus appropriations bills, but contracts with the Navy remain to be finalized.

Operating as part of the U.S. Navy’s Military Sealift Command, EPFs are intended primarily for use in littoral waters. However, they are expected to be able to make fast open ocean transits and operate with other Navy units in the open ocean.

The lead ship, USNS Spearhead, was damaged in moderate seas while transiting the Atlantic en route to Europe in September 2014. The ship took a significant pounding from wave slamming onto the “forepeak”, which is the bottom of the foremost part of the flat hull section spanning the two catamaran hulls. Repairs to the ship cost about $511,000. The repairs included structural reinforcement of the bow, which added 1,736 pounds to the ship’s weight and displaced about 250 gallons of fuel.

EPF forepeak Source:  U.S. Navy

On 22 September 2015, Michael Gilmore, Director, Operational Test and Evaluation, issued the following report to the Secretary of Defense: Follow-on Operational Test and Evaluation (FOT&E) Report on the Joint High Speed Vessel (JHSV).”

Key points in this report related to the weak bow are:

  • There is a serious problem with the bow structure related to the ship’s Safe Operating Envelope (SOE), which is designed to limit wave impact loads on the bow structure.
    • The Navy accepted compromises in the bow structure during construction of these ships.
    • Multiple ships of the class have suffered damage to the bow structure, and repairs/reinforcements are in progress class-wide.
  • Operating the ship outside of the SOE or encountering a rogue wave that is outside of the current sea state limits can result in sea slam events that cause structural damage to the bow structure of the ship.
  • The SOE operational restrictions are major limitation that must be accounted for in all missions assigned to these ships. The following limits apply:
    • At Sea State 3 or less (significant wave height up to 1.25 meters), the ship may operate up to its maximum speed
    • At Sea State 4 (significant wave height up to 2.5 meters) the ship must slow to 15 knots.
    • At Sea State 5 (significant wave height up to 4 meters) the ship must slow to 5 knots.
    • Above Sea State 5, the ship can only hold position and await calmer seas.
  • The Navy has spent almost $2.4 million strengthening the bows of the first four vessels delivered since late 2012.
    • The 5th operating ship, the USNS Trenton, will be modified during its next planned shipyard visit.
    • Later EPFs will be modified during construction, before delivery to the Navy.
  • There has been no heavy weather testing yet to verify if the fixes are sufficient.

In addition to the bow structural problems, Michael Gilmore’s report noted that the EPFs have the following significant problems:

  • The EPF cannot effectively inter-operate with a Mobile Landing Platform in the open ocean.
  • Unplanned limitations exist on launching a SEAL Delivery Vehicle (SDV) and associated support boats in the open ocean
  • Operational availability is limited primarily by the poor reliability of the Ship Service Diesel Generators, waterjets, and the Ride Control System (RCS).

You can download Michael Gilmore’s complete report at the following link:

http://news.usni.org/wp-content/uploads/2015/10/9-22-15-Follow-On-Operational-Test-and-Evaluation-FOTE-Report-on-the-….pdf

Short summary articles on these matters are available at the following links to Bloomberg Business and Seapower:

http://www.bloomberg.com/news/articles/2016-01-14/navy-s-fast-sealift-ships-can-t-stand-buffeting-from-high-seas

and

http://www.seapowermagazine.org/stories/20151019-epf.html

Severe ship damage from very high sea states and rogue waves is always a possibility for ships operating in the open ocean. However, the bow damage experienced by the EPFs operating in the open ocean points to underlying design and operational issues for this type of ship.

For additional commentary on problems associated with bow damage to vessels operating in the open ocean, I refer you to the short video at the following link:

https://www.youtube.com/watch?v=8-QNAwUdHUQ

 

 

60 Year Anniversary of “Underway on Nuclear Power”

60 years ago, on 17 Jan 1955,  CDR Eugene Wilkinson, the first CO of the USS Nautilus, SSN-571, ordered the following message sent as his nuclear-powered sub got underway for the first time in New London, CT:

Wilkinson_Message  Source: U.S. NavyWILKINSON-obit-web-articleLarge Source: U.S. Navy

You’ll find an interesting, short backstory to this message at the following link:
 
 
Wilkinson retired from the Navy as a Vice Admiral in 1974, died in 2013, and is buried in Fort Rosecrans National Cemetery in San Diego, CA.
 
There’s a short history of the early Navy nuclear power program and Nautilus at the following link:
 
 
 nautilus_23 Source: U.S. Navy
We owe a debt of gratitude to Admiral Hyman G. Rickover for the success of the Naval Nuclear Power Program, which is quite visible here in San Diego, with nuclear-powered aircraft carriers based at North Island and submarines operating from Ballast Point in Point Loma.
22 December 2015 update:
On 5 August 2015, I made a presentation to the Lyncean Group on 60 Years of Marine Nuclear Power: 1955 – 2015.  In connection with this presentation, I compiled an extensive history of worldwide marine nuclear power programs in five files:
  • Part 1 – Introduction
  • Part 2 – USA
  • Part 3 – Soviet Union / Russia
  • Part 4 – Other nuclear marine nations (UK, France, China and others)
  • Part 5 – Arctic operations
These detailed history files are available to view or download as pdf files on the Lyncean Past Meetings tab, Talk # 97, 8/5/15. Following is the direct link: