Category Archives: Mining

There’s Increased Worldwide Interest in Asteroid and Moon Mining Missions

In my 31 December 2015 post, “Legal Basis Established for U.S. Commercial Space Launch Industry Self-regulation and Commercial Asteroid Mining,” I commented on the likely impact of the “U.S. Commercial Space Launch Competitiveness Act,” (2015 Space Act) which was signed into law on 25 November 2016. A lot has happened since then.

Planetary Resources building technology base for commercial asteroid prospecting

The firm Planetary Resources (Redmond, Washington) has a roadmap for developing a working space-based prospecting system built on the following technologies:

  • Space-based observation systems: miniaturization of hyperspectral sensors and mid-wavelength infrared sensors.
  • Low-cost avionics software: tiered and modular spacecraft avionics with a distributed set of commercially-available, low-level hardened elements each handling local control of a specific spacecraft function.
  • Attitude determination and control systems: distributed system, as above
  • Space communications: laser communications
  • High delta V small satellite propulsion systems: “Oberth maneuver” (powered flyby) provides most efficient use of fuel to escape Earth’s gravity well

Check out their short video, “Why Asteroids Fuel Human Expansion,” at the following link:

http://www.planetaryresources.com/asteroids/#asteroids-intro

 Planetary Resources videoSource: Planetary Resources

For more information, visit the Planetary Resources home page at the following link:

http://www.planetaryresources.com/#home-intro

Luxembourg SpaceResources.lu Initiative and collaboration with Planetary Resources

On 3 November 2016, Planetary Resources announced funding and a target date for their first asteroid mining mission:

“Planetary Resources, Inc. …. announced today that it has finalized a 25 million euro agreement that includes direct capital investment of 12 million euros and grants of 13 million euros from the Government of the Grand Duchy of Luxembourg and the banking institution Société Nationale de Crédit et d’Investissement (SNCI). The funding will accelerate the company’s technical advancements with the aim of launching the first commercial asteroid prospecting mission by 2020. This milestone fulfilled the intent of the Memorandum of Understanding with the Grand Duchy and its SpaceResources.lu initiative that was agreed upon this past June.”

The homepage for Luxembourg’s SpaceResources.lu Initiative is at the following link:

http://www.spaceresources.public.lu/en/index.html

Here the Grand-Duchy announced its intent to position Luxembourg as a European hub in the exploration and use of space resources.

“Luxembourg is the first European country to set out a formal legal framework which ensures that private operators working in space can be confident about their rights to the resources they extract, i.e. valuable resources from asteroids. Such a legal framework will be worked out in full consideration of international law. The Grand-Duchy aims to participate with other nations in all relevant fora in order to agree on a mutually beneficial international framework.”

Remember the book, “The Mouse that Roared?” Well, here’s Luxembourg leading the European Union (EU) into the business of asteroid mining.

European Space Agency (ESA) cancels Asteroid Impact Mission (AIM)

ESA’s Asteroid Impact Mission (AIM) was planning to send a small spacecraft to a pair of co-orbital asteroids, Didymoon and Didymos, in 2022. Among other goals, this ESA mission was intended to observe the NASA’s Double Asteroid Redirection Test when it impacts Didymoon at high speed. ESA mission profile for AIM is described at the following link:

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Asteroid_Impact_Mission/Mission_profile

On 2 Dec 2016, ESA announced that AIM did not win enough support from member governments and will be cancelled. Perhaps the plans for an earlier commercial asteroid mission marginalized the value of the ESA investment in AIM.

Japanese Aerospace Exploration Agency (JAXA) announces collaboration for lunar resource prospecting, production and delivery

On 16 December 2016, JAXA announced that it will collaborate with the private lunar exploration firm, ispace, Inc. to prospect for lunar resources and then eventually build production and resource delivery facilities on the Moon.

ispace is a member of Japan’s Team Hakuto, which is competing for the Google Lunar XPrize. Team Hakuto describes their mission as follows:

“In addition to the Grand Prize, Hakuto will be attempting to win the Range Bonus. Furthermore, Hakuto’s ultimate target is to explore holes that are thought to be caves or “skylights” into underlying lava tubes, for the first time in human history.  These lava tubes could prove to be very important scientifically, as they could help explain the moon’s volcanic past. They could also become candidate sites for long-term habitats, able to shield humans from the moon’s hostile environment.”

Hakuto is facing the challenges of the Google Lunar XPRIZE and skylight exploration with its unique ‘Dual Rover’ system, consisting of two-wheeled ‘Tetris’ and four-wheeled ‘Moonraker.’ The two rovers are linked by a tether, so that Tetris can be lowered into a suspected skylight.”

Hakuto rover-with-tail

Team Hakuto dual rover. Source: ispace, Inc.

So far, the team has won one Milestone Prize worth $500,000 and must complete its lunar mission by the end of 2017 in order to be eligible for the final prizes. You can read more about Team Hakuto and their rover on the Google Lunar XPrize website at the following link:

http://lunar.xprize.org/teams/hakuto

Building on this experience, and apparently using the XPrize rover, ispace has proposed the following roadmap to the moon (click on the graphic to enlarge).

ispace lunar roadmapSource: ispace, Inc.

This ambitious roadmap offers an initial lunar resource utilization capability by 2030. Ice will be the primary resource sought on the Moon. Ispace reports:

“According to recent studies, the Moon houses an abundance of precious minerals on its surface, and an estimated 6 billion tons of water ice at its poles. In particular, water can be broken down into oxygen and hydrogen to produce efficient rocket fuel. With a fuel station established in space, the world will witness a revolution in the space transportation system.”

The ispace website is at the following link:

http://ispace-inc.com

 

 

Legal Basis Established for U.S. Commercial Space Launch Industry Self-regulation and Commercial Asteroid Mining

On 25 November 2015, the “U.S. Commercial Space Launch Competitiveness Act” was signed into law, and fundamentally changed the commercial U.S. space industry. The law consists of four parts:

  • Title I: “Spurring Private Aerospace Competitiveness and Entrepreneurship Act of 2015,” or, “SPACE Act of 2015”
    • Limits regulation of the commercial space launch industry for the next decade.
    • Rather than increasing government regulations now, the U.S. commercial space transportation industry is charged with developing, “voluntary consensus standards or any other construction that promotes best practices.”
    • Beginning on December 31, 2025, DOT may propose new regulations
  • Title II addresses DOT’s authority to license private sector parties to operate private remote sensing space systems.
  • Title III renames the Office of Space Commercialization as the Office of Space Commerce and specifies the roles of this office.
  • Title IV: “Space Resource Exploration and Utilization Act of 2015,” specifies:
    • “Any asteroid resources obtained in outer space are the property of the entity that obtained them, which shall be entitled to all property rights to them, consistent with applicable federal law and existing international obligations.”
    • “A U.S. commercial space resource utilization entity:
      • Shall avoid causing harmful interference in outer space, and
      • May bring a civil action in a U.S. district court for any action by another entity subject to U.S. jurisdiction causing harmful interference to its operations with respect to an asteroid resource utilization activity in outer space.”
    • This Act includes a “Disclaimer of Extraterritorial Sovereignty”
      • While commercial rights are specified in the Act, the U.S. “does not thereby assert sovereignty or sovereign or exclusive rights or jurisdiction over, or the ownership of, any celestial body.”

You can read a summary and the entire Act at the following link:

https://www.congress.gov/bill/114th-congress/house-bill/2262

To get a perspective on potential opportunities for asteroid mining, check out Asterank, which is a database on over 600,000 asteroids at the following link:

http://www.asterank.com

Many are “near-Earth” asteroids, with orbits that approach or cross Earth’s orbit.

Asterank screenshotSource: Asterank

Asterank includes important data such as asteroid mass, composition, and estimates of the costs and rewards of mining specific asteroids. Asterank was created and is maintained by Ian Webster. The firm Planetary Resources acquired Asterank in May 2013.

Once you’ve determined your target asteroid, you can plan to fetch it with the help of the 2012 “Asteroid Retrieval Feasibility Study” by the Keck Institute for Space Studies, which you can download from the following link:

http://www.kiss.caltech.edu/study/asteroid/asteroid_final_report.pdf

Planetary Resources’ business focus is on Earth observation and asteroid prospecting. You can read about the technologies they currently are developing to support asteroid prospecting at the following link:

http://www.planetaryresources.com/asteroids/#asteroids-intro

As noted by Planetary Resources, “near-Earth asteroids are the “low hanging fruit of the Solar System.” Their website identified eight candidate targets of interest.

With the reduced regulatory risk offered by the U.S. Commercial Space Launch Competitiveness Act, investors are certain to take a more favorable view toward making long-term investments in commercial launch vehicles and asteroid mining technologies. It will be years before commercial asteroid prospecting missions become a reality and much longer before the real economics of asteroid mining are known. Asteroid mining will require very large, long-term investments, but this isn’t science fiction any more.

U.S. Reliance on Non-Fuel Mineral Imports

The U.S. Geologic Survey produces a series of mineral commodity annual reports and individual commodity data sheets. The web page for the index to these reports and data sheets is at the following link:

http://minerals.usgs.gov/minerals/pubs/mcs/

One particularly interesting document, with a very dull sounding title, is, Mineral Commodity Summaries 2015, which you can download for free at the following link:

http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf

This USGS report starts by putting the non-fuel mineral business sector in context with the greater U.S. economy. In the USGS chart below, you can see that the non-fuel mineral business sector makes up 13.5% of the U.S. economy. By dollar volume, net imports of processed mineral materials make up only a small portion (about 1.6%) of the non-fuel mineral business.

USGS role of minerals in the economy

In the, Mineral Commodity Summaries 2015, USGS also identified the U.S. reliance on non-fuel minerals imports. Their chart for 2014 is reproduced below.

USGS Net Import Reliance

Many of the above non-fuel minerals have very important uses in high-value products created in other business sectors.  A good summary table on this matter appears in the National Academies Press report entitled, Emerging Workforce Trends in the U.S. Energy and Mining Industries: A Call to Action, published in August 2015. You can view or download this report for free at the following link:

http://www.nap.edu/new/

In this report, refer to Table 2.5, Common or Essential Products and Some of Their Mineral Components.

Among the minerals with very important roles in modern electrical and electronic components and advanced metals is the family of rare earths, which is comprised of the 17 elements highlighted in the periodic table, below:

  • the 15 members of the Lanthanide series from 57La (Lanthanum) to 71Lu (Lutetium), and
  • the two Transitional elements 21Sc (Scandium) and 39Y (Yttrium).

Periodic Table - Rare Earths

Source: www.rareelementresources.com/

In the above 2014 import reliance chart, USGS reported that the U.S. continued to be a net importer of rare earth minerals (overall, 59% reliant), and that for Scandium the U.S was 100% reliant on imports.

In the Mineral Commodity Summaries 2015, USGS reported the following usage of rare earth minerals in the U.S.:

  • General uses: catalysts, 60%; metallurgical applications and alloys, 10%; permanent magnets, 10%; glass polishing, 10%; and other, 10%.
  • Scandium principal uses: solid oxide fuel cells (SOFCs) and aluminum-scandium alloys. Other uses are in ceramics, electronics, lasers, lighting, and radioactive isotopes used as a tracing agent in oil refining

China became the world’s dominant producer of rare earths in the 1990s, replacing U.S. domestic producers, none of which could not compete economically with the lower prices offered by the Chinese producers.

On March 22, 2015, the CBS TV show 60 Minutes featured a segment on the importance of rare earth elements and underscored the need to ensure a domestic supply chain of these critical minerals. You can view this segment at the following link:

https://www.youtube.com/watch?v=N1HiX0HiAuo

In December 2011, the U.S. Department of Energy (DOE) issued a report entitled Critical Materials Strategy, which you can download for free at the following link:

http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf

The summary results of the DOE “criticality assessment” are reproduced below

“Sixteen elements were assessed for criticality in wind turbines, EVs (electric vehicles), PV (photovoltaic) cells and fluorescent lighting. The methodology used was adapted from one developed by the National Academy of Sciences. The criticality assessment was framed in two dimensions: importance to clean energy and supply risk. Five rare earth elements (REEs)—dysprosium, terbium, europium, neodymium and yttrium—were found to be critical in the short term (present–2015). These five REEs are used in magnets for wind turbines and electric vehicles or phosphors in energy-efficient lighting. Other elements—cerium, indium, lanthanum and tellurium—were found to be near-critical. Between the short term and the medium term (2015– 2025), the importance to clean energy and supply risk shift for some materials (Figures ES-1 and ES-2).”

DOE Critical Materials Strategy

While the results of the DOE criticality assessment focused on importance to the energy sector, the identified mineral shortages will impact all business sectors that depend on these minerals, including consumer electronics and national defense.

Further insight on the importance of rare earths is provided by an annual report to the Senate Select Committee on Intelligence entitled, U.S. Intelligence Community Worldwide Threat Assessment Statement for the Record. The report delivered on March 12, 2013 highlighted the national security threat presented by China’s monopoly on rare earth elements. You can download that report at the following link:

https://www.hsdl.org/?view&did=732599

The 2013 threat assessment offered the following perspective on the strategic importance of rare earth minerals:

“Rare earth elements (REE) are essential to civilian and military technologies and to the 21st century global economy, including development of green technologies and advanced defense systems. China holds a commanding monopoly over world REE supplies, controlling about 95 percent of mined production and refining. China’s dominance and policies on pricing and exports are leading other countries to pursue mitigation strategies, but those strategies probably will have only limited impact within the next five years and will almost certainly not end Chinese REE dominance.”

 While the above focus has been on rare earths, the discussion serves to illustrate that the U.S. is dependent on importing many minerals that are very important to the national economy.