Category Archives: Power Generating Technology – Nuclear

The NRC will allow the Diablo Canyon 1 & 2 nuclear power plants to continue operating while considering their belated license renewal applications

Peter Lobner

This is good news for all Californians and California businesses that depend on the State’s rather fragile electrical grid as their primary source of electric power! 

On 2 March 2023, the U.S. Nuclear Regulatory Commission (NRC) granted an exemption to Pacific Gas & Electric Co. (PG&E) that would allow the Diablo Canyon 1 & 2 nuclear power plants to continue operating while the NRC considers its license renewal application. The NRC press release stated:

“The exemption granted today will allow those licenses to remain in effect provided PG&E submits a sufficient license renewal application for the reactors by Dec. 31, 2023. The NRC will continue its normal inspection and oversight of the facility throughout the review to ensure continued safe operation. If granted, the license renewal would authorize continued operation for up to 20 years.”

Diablo Canyon Nuclear Power Plant. 
Source: Pacific Gas & Electric Company

You can read the full NRC press release here: https://www.nrc.gov/cdn/doc-collection-news/2023/23-015.pdf

You can track the status of the Diablo Canyon license renewal process on the Nuclear Regulatory Commission website here: https://www.nrc.gov/reactors/operating/licensing/renewal/applications/diablo-canyon.html

You may recall that, in 2016, many environmental groups and state legislators claimed victory in getting the commitment from PG&E to close the Diablo Canyon nuclear power plant early.  Here’s just one example of that sentiment at the time:

“In a major victory for environmentalists, California is going nuclear-free, ending atomic energy’s more than half-century history in the state. On Tuesday, one of the state’s largest utilities agreed to a proposal endorsed by environmental groups and labor unions to shutter California’s last operating nuclear power plant, Diablo Canyon, by 2025.” (Source: Democracy Now, 22 June 2016).

In my 2016 post, “The Nuclear Renaissance is Over in the U.S.,” I noted: 

“On 21 June 2016, PGE issued a press release announcing that they will withdraw their application to the NRC for a 20-year license extension for the Diablo Canyon 1 & 2 nuclear power plants and will close these plants by 2025 when their current operating licenses expire.  PGE will walk away from about 41 GW-years of carbon-free electric power generation.”

Almost seven years ago, it was quite apparent to many that the early closure of Diablo Canyon would not be good for California or the environment.  It took that long for the state government to understand the situation and support the current effort to get the Diablo Canyon operating licenses extended.  Better late than never.  However, in their shortsighted view, the state government seems to be supporting a license extension only through 2030. If the legislators have their way, California will reclaim only a small portion of the carbon-free electric power generation that would be available from the 20 year operating license extensions that the NRC may grant.

I’d like see the California legislature and the associated complex web of state agencies that have a stake in this matter unanimously acknowledge that nuclear power is an important contributor toward energy de-carbonization.  In addition, I’d like to see that same group acknowledge that nuclear power plants are important for delivering reliable 24/7 generating capacity to the CALISO grid, and thereby helping maintain stability on a grid with a large fraction of variable-output, renewable generators.  If those factors are important to California’s government, then perhaps there is a future for nuclear power in the state, including the new generation of small, modular reactors (SMRs). California state support for nuclear power generation would open many exciting options for modernizing and decarbonizing electric power generation, transmission and distribution throughout the state, while ensuring that reliable electric power is available to all residents and business, many of which are seeking to decarbonize their activities by replacing their fossil fuel use with electricity that is available as needed, 24/7.

You can call that my California dream.

For more information:

DoD’s Project Pele microreactor is being developed by BWXT with a target for initial operation at a DoD facility in 2027

Peter Lobner

In 2016 the Defense Science Board (DSB) identified energy as a critical enabler of future military operations. The DoD’s Strategic Capabilities Office (SCO) launched Project Pele with the objective to design, build, and demonstrate a prototype mobile nuclear reactor to provide reliable and resilient electric power, while minimizing risk of nuclear proliferation, environmental damage, or harm to nearby personnel or populations. 

The Pele reactor will be the first electricity-generating Generation IV nuclear reactor built in the United States. Check out the DoD Office of the Under Secretary of Defense, Research and Engineering (OUSD(R&E)) website for the Project Pele Environmental Impact Statement (EIS) here: https://www.cto.mil/pele_eis/

In June 2022, Department of Defense (DoD) selected BWXT to produce a single prototype Pele mobile microreactor, which will be a Brayton-cycle high-temperature gas-cooled reactor (HTGR) capable of generating an electrical output of 1 MWe to 5 MWe. See the story in Power magazine here: https://www.powermag.com/dod-picks-bwxt-to-manufacture-project-pele-prototype-nuclear-microreactor/

The Pele reactor will use High-Assay, Low-Enriched Uranium (HALEU, <20% enriched) fuel in the form of TRstructural ISOtropic (TRISO) coated fuel pellets (each about the size of a poppy seed). 

Cross-section of a TRISO particle, greatly magnified.
Source: DOE

The reactor will be assembled and initially operated at the Idaho National Laboratory (INL), under the safety oversight of the Department of Energy (DOE).  The Pele reactor is expected to be transportable by rail, truck or cargo aircraft.

Pele reactor modes of transportation. Source: GAO

There’s a good status update on Project Pele in a February 2023 article on the Energy Intelligence website, “Interview: Pentagon’s Jeff Waksman on Project Pele Microreactor,” at the following link: https://www.energyintel.com/00000186-7b02-d1cb-a3ee-ffbf32940000

For more information

Ulstein’s Nuclear-powered Thor and its All-electric Companion Vessel Are a Zero-Carbon Solution for Marine Tourism

Peter Lobner

1. Introduction

In June 2022, the Norwegian firm Ulstein (https://ulstein.com) announced their conceptual design of a Replenishment, Research and Rescue (3R) vessel named Thor that will be powered by a thorium molten salt reactor (MSR). This vessel can function as a seaborne mobile charging station for a small fleet of electrically-powered expedition / cruise ships that are designed to operate in environmentally sensitive areas such as the Arctic and Antarctic. Other environmentally sensitive areas include the West Norwegian Fjords, which are UNESCO World Heritage sites that will be closed in 2026 to all ships that are not zero-emission. In the future, similar regulations could be in place to protect other environmentally sensitive regions of the world, thereby reinforcing Ulstein’s business case behind Thor and its all-electric companion vessels.

Ulstein’s Thor MSR-powered vessel (left) and 
Sif electrically-powered expedition / cruise vessel (right). 
Source: Ulstein

2. The MSR-powered Thor charging station

Thor is a 149-meter (500-foot) long, zero-emission, nuclear-powered vessel that features Ulstein’s striking, backwards-sloping X-bow, which is claimed to result in a smoother ride, higher speed while using less energy, and less mechanical wear than a ship with a conventional bow. 

For its R3 mission, Thor would be outfitted with work boats, cranes, a helicopter landing pad, unmanned aerial vehicles (UAVs), unmanned surface vessels, firefighting equipment, rescue booms, a lecture hall and laboratories.

As a charging station, Thor would be sized to recharge four all-electric vessels simultaneously.

Thor.  Source: Ulstein

Thor also could serve as a floating power station, replacing diesel power barges in some developing countries or in some disaster areas while the local electric power infrastructure is being repaired.

Ulstein projects that an operational Thor vessel could be launched in “10 to 15 years.” However, the development and licensing of a marine MSR is on the critical path for that schedule.  

Thor, starboard side views.  Source, both graphics: Ulstein

3. The all-electric Sif expedition / cruise ship

Sif, named after the goddess who was Thor’s wife, is a design concept for a 100-meter (330-foot) long, all-electric, zero-emission expedition / cruise ship designed to operate with minimal impact in environmentally sensitive areas. The ship will be powered by a new generation of solid batteries that are expected to offer greater capacity and resistance to fire than lithium-ion batteries used commonly today.  It will be periodically recharged at sea by Thor.

The ship can accommodate 80 passengers and 80 crew. 

Sif, starboard side view.  Source, both graphics: Ulstein

4. A marine MSR power plant

The pressurized water reactor (PWR) is the predominant marine nuclear power plant in use today, primarily in military vessels, but also in Russian icebreakers and a floating nuclear power plant in the Russian Arctic. 

Ulstein reported that it has been exploring MSR technology because of its favorable operating and safety characteristics. For example, an MSR operates at atmospheric pressure (unlike a PWR) and passive features and systems maintain safety in an emergency. If the core overheats, the molten salt fuel/coolant mixture automatically drains out of the reactor and into a containment vessel where it safely solidifies and can be reused.  You’ll find a good overview of MSR technology here: https://whatisnuclear.com/msr.html

While a few experimental MSRs have operated in the past, no MSR has been subject to a commercial nuclear licensing review, even for a land-based application. Ulstein favors a thorium-fueled MSR. The thorium-uranium-233 fuel cycle introduces additional technical and nuclear licensing uncertainties because of the lack of operational and nuclear regulatory precedents.

Several firms are developing MSR concepts. However, the combination of a marine MSR and a thorium fuel cycle remains elusive. Two uranium-fueled marine MSR design concepts are described below.

Seaborg Technologies

The Danish firm Seaborg Technologies (https://www.seaborg.com), founded in 2014, is developing a compact MSR (CMSR) with a rating of about 250 MWt / 100 MWe for use in power barges (floating nuclear power plants) of their own design (see my 16 May 2021 post). The thermal-spectrum CMSR uses uranium-235 fuel in a molten proprietary salt, with a separate sodium hydroxide (NaOH) moderator.  

A Seaborg Technologies CMSR module could generate 100 MWe. Dump tank shown below reactor. Source: Seaborg via NEI (2022)

Seaborg’s development time line calls for a commercial CMSR prototype to be built in 2024, with commercial production of power barges beginning in 2026. 

Source: Seaborg (2022)

In April 2022, Seaborg and the Korean shipbuilding firm Samsung Heavy Industries signed a partnership agreement for manufacturing and selling turnkey CMSR power barges. 

On 10 June 2022, Seaborg was selected by the European Innovation Council to receive a significant (potentially up to €17.5 million) innovation grant to help accelerate their work on the CMSR.

CORE-POWER and the Southern Company consortium

The UK firm CORE-POWER Ltd. (https://corepower.energy), founded in 2018, began with a concept for a compact uranium-235 fueled, molten chloride salt reactor named the m-MSR for marine applications. This modular, inherently safe, 15 MWe micro-reactor system was designed as a zero-carbon replacement power source for the fossil-fueled power plants in many existing commercial marine vessels.  It also was intended for use as the original power source for new vessels, as proposed for the Earth 300 Eco-Yacht design concept unveiled by entrepreneur Aaron Olivera in April 2021 (see my 17 April 2021 post). The power output of a modular CORE-POWER m-MSR installation could be scaled to meet operational needs by adding reactor modules in compact arrangements suitable for shipboard installation. 

A set of six small, compact CORE-POWER m-MSR modules
could generate 90 MWe. Dump tank not shown. Source: CORE-POWER

In November 2020, CORE-POWER announced that it had joined an international consortium to develop MSRs. This team includes the US nuclear utility company Southern Company (https://www.southerncompany.com), US small modular reactor developer TerraPower (https://www.terrapower.com) and nuclear technology company Orano USA (https://www.orano.group/usa/en). In the consortium, TerraPower is responsible for the fast-spectrum Molten Chloride Fast Reactor (MCFR). CORE-POWER is responsible for maritime readiness and regulatory approvals.

This consortium applied to the US Department of Energy (DOE) to participate in cost-share risk reduction awards under the Advanced Reactor Demonstration Program (ARDP), to develop a prototype MCFR as a proof-of-concept for a medium-scale commercial-grade reactor. In December 2020, the consortium was awarded $90.4 million, with the goal of demonstrating the first MCFR in 2024.  DOE reported, “They expect to begin testing in a $20 million integrated effects test facility starting in 2022. The team has successfully scaled up the salt manufacturing process to enable immediate testing. Data generated from the test facility will be used to validate thermal hydraulics and safety analysis codes for licensing of the reactor.”In February 2021, CORE-POWER presented the MCFR development schedule in the following chart, which shows the MCFR becoming available for deployment in marine propulsion in about 2035.  This is within the 10 to 15 year timescale projected by Ulstein for their first Thor vessel.

Source: CORE-POWER (2021)

5. In conclusion

A seaborne nuclear-powered “charging station” supporting a small fleet of all-electric marine vessels provides a zero-carbon solution for operating in protected, environmentally sensitive areas that otherwise would be off limits to visitors. Ulstein’s concept for the MSR-powered Thor R3 vessel and the Sif companion vessel is a clever approach for implementing that strategy.

It appears that a uranium-fueled marine MSR could be commercially available in the 10 to 15 year time frame Ulstein projects for deploying Thor and Sif.  The technical and nuclear regulatory uncertainties associated with a thorium-fueled marine MSR will require a considerably longer time frame. 

6. For additional information 

Ulstein Thor & Sif

Video

Seaborg CMSR

CORE-POWER m-MSR

Could Nuclear-Powered Crypto Currency Mining Become a Trend?

Peter Lobner, updated 8 March 2024

The term “bitcoin mining” has become a colloquial expression, but the actual activity involved in mining a crypto currency isn’t intuitively obvious to the casual observer. Marcus Lu, reporting for Visual Capitalist, can help us out here.  He explained:

“When people mine bitcoins, what they’re really doing is updating the ledger of Bitcoin transactions, also known as the blockchain. This requires them to solve numerical puzzles which have a 64-digit hexadecimal solution known as a hash. Miners may be rewarded with bitcoins, but only if they arrive at the solution before others. It is for this reason that Bitcoin mining facilities—warehouses filled with computers—have been popping up around the world. These facilities enable miners to scale up their hashrate, also known as the number of hashes produced each second. A higher hashrate requires greater amounts of electricity, and in some cases can even overload local infrastructure.”

So your basic crypto currency miner needs a lot of computer processing power, electric power and an internet service provider.  To get started, all of that requires some hard currency, unless you can find a work-around. Now, a few recent headlines make a bit more sense:

  • “1,069 Bitcoin Miners Steamrolled In Malaysia for Stealing Energy,” 17 July 2021
  • “Illegal Crypto Mining Farm With Almost 5,000 Computers Busted in Ukraine – The illegal operation cost between $186,000 and $259,300 in electricity to the state each month.” 12 July 2021
  • “Police find bitcoin mine using stolen electricity in West Midlands (UK),” 28 May 2021
  • “U.S. small towns take on energy-guzzling bitcoin miners,” 13 May 2021
  • “Cryptocurrency miners grapple with major energy crunch in Kazakhstan,” 27 November 2021

These headlines suggest that crypto currency mining can generate significant wealth, and, for some, this prospect is worth the risk of being caught stealing a lot of electricity.  

Sam Ling, writing for Miner Daily in May 2021, describes his methodology for estimating the cost to mine a bitcoin, which depends on many factors, including the cost of electricity and the cost, processing power and lifetime of the computers.  Ling estimates: “It currently costs between $7,000-$11,000 USD to mine a bitcoin. …… As the price of BTC is $56,000, it remains very profitable to mine bitcoin.” You’ll find more details here: https://minerdaily.com/2021/how-much-does-it-cost-to-mine-a-bitcoin-update-may-2021/

Of course, there are many legitimate businesses mining bitcoins.  You’ll find a list of the top bitcoin mining firms here: https://www.ventureradar.com/keyword/Bitcoin%20Mining

At the industrial-size end of the crypto mining facility spectrum, US power company Talen Energy announced in July 2021 that it is planning to develop a nuclear-powered crypto mining facility and data center adjacent to its two unit, 2,494 MWe Susquehanna Steam Electric Station in Pennsylvania. The first phase of the crypto mining facility will require 164 MW of power and is due to come online in Q2 2022. When complete, the crypto mining facility will require 300 MW of on-site power supplied from the nuclear power plants via two independent substations.  The potential exists to expand the crypto mining facility to 1,000 MW capacity in the future.

The planned Talen Energy crypto mining facility at the Susquehanna Steam Electric Station.  Source: DataCenterDynamics via Interesting Engineering

In May 2021, Nic Carter reported in the Harvard Business Review, “According to the Cambridge Center for Alternative Finance (CCAF), Bitcoin currently consumes around 110 Terawatt-Hours per year — 0.55% of global electricity production, or roughly equivalent to the annual energy draw of small countries like Malaysia or Sweden.”  That would put current global crypto currency mining energy consumption at about 30th place among all nations in the world.  In the future, energy consumption for crypto currency mining is certain to increase, perhaps dramatically.  Is there an upper limit?

The current trend in tracked by Digiconomist with their Bitcoin Energy Consumption Index, which provides the latest estimate of the total energy consumption of the Bitcoin network. The following chart is from their website here:  https://digiconomist.net/bitcoin-energy-consumption/

While the Susquehanna Steam Electric Station is fortunate to have a gained a new customer for their electric power, Exelon Generation reported in June 2021 that three of its Illinois nuclear power plants, Byron, Dresden, and Quad Cities, did not clear the PJM Interconnection capacity auction. This means that these Exelon nuclear plants have lost a customer for their future electric power generation. The issue is complex, but appears to be rooted in power auction rules that are, at least in part, inconsistent with the nation’s goal of reducing the overall carbon footprint of electric power generation. Exelon explained:

“Byron and Dresden, despite being efficient and reliable units, face revenue shortfalls in the hundreds of millions of dollars because of declining energy prices and market rules that allow fossil fuel plants to underbid clean resources in the PJM Interconnection capacity auction.”

In mid-September 2021, Illinois Gov. J.B. Pritzker signed an energy bill (Senate Bill 2408) that included provisions for Exelon to receive the financial incentives it needed to keep the Byron and Dresden nuclear plants open.  Exelon subsequently confirmed that the plants will continue operating for at least six more years (thru 2027).

Exelon is not the only US nuclear power utility with this type of issue. Several more US nuclear power plants are at risk of retiring prematurely instead of seeking a license extension to operate for another 20 years generating zero-carbon electricity.  S&P Global Platts provides a good overview of the seriousness of the current situation in the following infographic:

Source: S&P Global Platts, 3 May 2021

Congress and the state governments need to act now to protect the nuclear power plants at high risk of premature closure, and ensure their continued operation as generators of zero-carbon electricity.

Perhaps the planned Talen Energy crypto currency mining venture points to an odd synergism between miners and nuclear power plant operators. Instead of retiring nuclear power plants that are struggling financially, it may make sense to the owners to build crypto mining facilities and reap the profits from crypto currency sales. Taken to its extreme, you can imagine a nuclear power plant diverting all of its zero-carbon electric power output to its own very profitable crypto mining facility. Just imagine how many Bitcoins could be generated by diverting all US nuclear power plant electricity generation (about 20% of total US electricity generation) to power crypto currency miners. 

Going back to my question “Is there an upper limit?,” I’m afraid only time will tell.  

8 March 2024 update: Talen Energy data center sold

The completed Talen Energy data center building at the Susquehanna nuclear plant. Source: Talen Energy

Talen Energy’s bitcoin mining adventure was not successful. In May 2022, the firm filed for Chapter 11 bankruptcy in connection with a financial restructuring of the firm. After exiting bankruptcy in 2023, the firm sought to sell its Susquehanna data center as a means to pay off debts and generally improve its cash flow. On 4 March 2024, Talen Energy announced the sale of its Susquehanna data center campus for $650 million to cloud service provider Amazon Web Services (AWS). By virtue of its existing Power Purchase Agreement (PPA) with Susquehanna, Talen Energy remains as an energy retailer, positioned between the Susquehanna nuclear power plant and the AWS-owned data center. Talen will providing fixed-price electricity to the AWS data center, which has a contractual commitment to ramp up its power demand as the data center is expanded over several years. AWS has a one-time option to cap its power demand at 480 MW. Talen will be able to supply up to 960 MW of power under the terms of its PPA with Susquehanna. 

For more information

Nuclear power plants at risk of closure

Bitcoin miner energy theft & adverse impacts on electrical grids

Floating Nuclear Power Plants Will be Operating at Several Sites Around the World by the End of the 2020s

Peter Lobner

1. Introduction

This post is an update and supplement to the information on floating nuclear power plants (FNPPs) in my July 2018 post, “Marine Nuclear Power: 1939 – 2018,” at the following link: https://lynceans.org/all-posts/marine-nuclear-power-1939-2018/

An FNPP is a transportable barge housing one or more nuclear power reactors that can deliver electric power and other services, such as low temperature process heat and/or desalinated water, to users at a wide variety of coastal or offshore sites. FNPPs are a zero-carbon energy solution that has particular value in remote locations where the lack of adequate electrical power and other basic services are factors limiting development and/or the quality of life.

After being manufactured in a shipyard, the completed FNPP is fueled, tested and then towed to the selected site, where a safe mooring provides the interfaces to connect to the local / regional electrical grid and other user facilities.

The US operated the first FNPP, Sturgis, in the Panama Canal from 1968 to 1975.  Sturgiswas equipped with a 45 MWt / 10 MWe Martin Marietta MH-1A pressurized water reactor (PWR) that was developed under the Army Nuclear Power Program. 

Sturgis moored in the Panama Canal. Source: Army Corps of Engg’s

Sturgis supplied electric power to the Panama Canal Zone grid, replacing the output of Gatun Hydroelectric Plant. This allowed more water from Gatun Lake to be available to fill canal locks, enabling 2,500 more ships per year to pass through the canal. After decommissioning, dismantling was finally completed in 2019.

2. Akademik Lomonosov – The first modern FNPP

It wasn’t until 2019 that another FNPP, Russia’s Akademik Lomonosov, supplied power to a terrestrial electricity grid, 44 years after Sturgis.  The Lomonosov is a one-of-a-kind, modern FNPP designed for operation in the Arctic.  With two KLT-40S PWRs, Lomonosov supplies up to 70 MWe of electric power to the isolated Chukotka regional power grid or up to 50 Gcal/h of low temperature process heat at reduced electrical output to users in the industrial city of Pevek, near the eastern end of Russia’s Northern Sea Route. 

Akademik Lomonosov at Pevek. Source: Sputnik / Pavel Lvov

Lomonosov started providing electricity to the grid on 19 December 2019 and regular commercial operation began on 22 May 2020.

3. FNPPs under development by several nations

Several nations are developing new FNPP designs along with plans for their serial production for domestic and/or export sale.  The leading contenders are presented in the following chart. 

Floating Nuclear Power Plants in Operation & Under Development

Akademik Lomonosov and the first four new FNPP designs in the above chart use small PWRs in various compact configurations. PWRs have been the dominant type of power reactor worldwide since their introduction in naval reactors and commercial power reactors in the 1950s. The Seaborg power barges will use compact molten salt reactors (CMSRs) that have functional similarities to the Molten Salt Reactor Experiment (MSRE) that was tested in the US in the early 1960s.

Russia

Russia is developing their 2nd-generation “optimized floating power unit” (OPEB) to deliver 100 MWe electric power, low temperature process heat and water desalination to support their domestic economic development in the Arctic. In November 2020, Rosatom director for development and international business, Kirill Komarov, reported that there was demand for FNPPs along the entire length of Russia’s Northern Sea Route, where a large number of projects are being planned. This was reinforced in May 2021, when Russia’s President Vladimir Putin endorsed a plan to deploy OPEBs to supply a new power line at Cape Nagloynyn, Chaunskaya Bay, to support the development of the Baimskaya copper project in Chukotka.  The development plan calls for 350 MWe of new generation from nuclear or liquid natural gas (LNG) generators.  Baimskaya currently is supplied from Pevek, where the Lomonosov is based.

Chaunskaya Bay & Pevek in Russia’s Arctic Far East. Source:  Google maps

A version of the OPEB also is intended for international export and has been designed with the flexibility to operate in hot regions of the world.  Bellona reported that “Rosatom has long claimed that unspecified governments in North Africa, the Middle East and Southeast Asia are interested in acquiring floating nuclear plants.”

China

In the 1960s, China Shipbuilding Industry Corporation (CSIC) set up the 719 Research Institute, also known as the Wuhan Second Ship Design Institute or CSIC 719, to develop applications for nuclear power technology in marine platforms. CSIC has become China’s biggest constructor of naval vessels, including nuclear submarines. 

About a decade ago, China considered importing FNPP technology from Russia.  In 2015, China’s National Development and Reform Commission (NDRC) agreed with a CSIC 719 design plan to develop an indigenous offshore marine nuclear power platform. This plan included both floating nuclear power plants and seabed-sited nuclear power plants. Today, part of this plan is being realized in the FNPP programs at China National Nuclear Corporation (CNNC) and China General Nuclear Power (CGN), two staunch competitors in China’s nuclear power business sector.

China included the development of CNNC’s 125 MWe ACP100S and CGN’s 65 MWe ACPR50S marine PWR plants in its 13th five-year plan for 2016 to 2020. The NDRC subsequently approved both marine reactor designs. 

As an example of the magnitude of China’s domestic offshore market for FNPPs, the total installed fossil fuel-powered generation in China’s offshore Bohai oilfield was estimated to be about 1,000 MWe in 2020 and growing.  Replacing just these generators and providing heating and desalination services for offshore facilities represents a near-term market for a dozen or more FNPPs.  Other domestic application include providing these same services at remote coastal sites and offshore islands. China has announced its intention to construct a batch 20 FNPPs for domestic use. The Nuclear Power Institute of China (NPIC) has recommended installing the country’s first FNPP at a coastal site on the Yellow Sea near Yantai, Shandong Province. South Korea raised its objection to this siting plan in 2019.  

Possible site for China’s first FNPP.
Source: Pulse (22 Mar 2019)

Other possible FNPP deployment sites may include contested islands that China has begun developing the South China Sea.  This is a very sensitive political issue that may partially account for why there has been very little recent news on the CNNC and CGN FNPP programs.  Based on their development plans discussed about five years ago, it seemed that China’s first FNPP would be completed in the early 2020s. 

In addition to their domestic applications, China has repeatedly expressed interest in selling their FNPPs to international customers.

South Korea & Denmark

In the absence of clear domestic FNPP markets in South Korea and Denmark, KEPCO E&C and Seaborg Technologies are focusing on the export market, primarily with developing nations.  

Details on modern FNPP designs 

You’ll find more details on these new FNPPs in my separate articles at the following links:

4. Maintaining FNPP fleets

All of the new FNPPs require regular reactor refueling and periodic maintenance overhauls during their long service lives.  The periodic overhauls ensure that the marine vessel, the reactor systems and ship’s systems remain in good condition for their planned service life, which could be 60 or more years.

The FNPPs with PWRs have refueling intervals ranging from about 2 years (ACP100S) to as long as 10 years (RITM-200). Some of the PWR refuelings will be conducted dockside, while others will be conducted in a shipyard during a periodic maintenance overhaul. For Russian FNPPs, such overhauls (referred to as “factory repairs”) are scheduled to occur at 12-year intervals for the Lomonosov and 20-year intervals for the OPEB.

The fundamentally different Seaborg CMSR, with molten salt fuel, is refueled regularly while the reactor is operating.  Periodic maintenance overhauls would still be expected to ensure the condition of the marine vessel, the reactor systems and ship’s systems.

With a fleet of FNPPs in service, most will be operating, while some are in the shipyard for their periodic maintenance overhauls.  In addition, new FNPPs would be entering service periodically. When it is time to service an FNPP in a shipyard, it will be replaced by a different (existing or new) FNPP that is brought in to take its place.

At the end of its service life, an FNPP will be returned to a shipyard to be decommissioned, decontaminated and then dismantled, like Sturgis. Russia already has established special long-term spent fuel and radioactive waste storage facilities in mainland Russia. China, South Korea and Denmark will need to make similar provisions for the end-of-life processing and safe disposition of their retired FNPPs.

5. Economic issues

In March 2019, Jim Green wrote on what he called “the questionable economics of SMRs” in his article, “An obituary for small modular reactors.” One of his conclusions was that, “…in truth there is no market for SMRs.”  Another conclusion was that “No-one wants to pay for SMRs. No company, utility, consortium or national government is seriously considering building the massive supply chain that is at the very essence of the concept of SMRs ‒ mass, modular factory construction. Yet without that supply chain, SMRs will be expensive curiosities.” 

I might agree that this could be the case for land-based SMRs, but marine FNPPs are a different matter.  In remote areas being considered for FNPP deployment, there probably are fewer energy options, energy price competition is a lesser concern, and an extended fuel supply chain is undesirable or impractical. Examples include FNPP applications supporting resource development along Russia’s Northern Sea Route and in China’s offshore waters.  The domestic markets in both nations probably can support production runs of 10s of FNPPs.  While this isn’t “mass production” in the sense of many heavy industries, it would certainly be a big enough production run to change the manufacturing paradigm in the marine nuclear industry and provide a real validation of the economics of SMRs.

6. International nuclear regulatory / legal / political issues

Deployment of the first modern FNPP, the Akademik Lomonosov, in the Arctic was accomplished under Russian domestic nuclear laws and regulations and, after the reactors were fueled, the transit to its destination was accomplished within Russian territorial waters. The final destination, Pevek, is about 980 km (609 miles) from the Bering Strait and the nearest international boundary.  Not without controversy, particularly among Scandinavian nations, Lomonosov’s deployment was straightforward after the vessel completed all stages of licensing and regulatory reviews required in Russia.  Now Lomonosov has been commissioned and is setting an example for the rest of the world by operating successfully in a remote Arctic port.

Except for Russia’s nuclear-powered icebreaking vessels, there have been no other civilian nuclear vessels in service since Japan’s Mutsu retired in 1992. For almost 30 years, there has been no need to establish and maintain a comprehensive international civilian nuclear vessel regulatory and legal framework. 

In her August 2020 article, “Legal framework for nuclear ships,” Iris Bjelica Vlajić reports that the main international documents regulating the use of civil nuclear ships are:

  • UN Convention on the Law of the Sea (UNCLOS)
  • IMO Convention for the Safety of Life at Sea (SOLAS)
  • IMO Convention on The Liability of Operators of Nuclear Ships and the Code of Safety for Nuclear Merchant Ships

Further FNPP deployment along Russia’s arctic coast and initial FNPP deployment in China’s territorial coastal waters can be accomplished under the respective nation’s domestic nuclear laws and regulations.  It’s easy to imagine that a range of international issues will arise as FNPP deployment becomes more widespread, in situations like the following

  • An FNPP is deployed to a site close to an international border.
  • An FNPP is deployed in a sensitive international ecosystem.
  • A fueled FNPP from any nation needs to transit an international strait or an exclusive economic zone (EEZ) of another nation enroute to its destination.
  • An FNPP is deployed to an island that is contested by one or more other nations (i.e., several islands and island groups in the South China Sea).

There has been speculation recently that the sensitivity of the last issue, above, may be contributing to increased secrecy in the last couple of years related to China’s FNPP programs.

As FNPP deployment expands, the international community will be playing catch-up as the UN, IMO, IAEA and others contribute to developing a modern nuclear regulatory and legal framework for FNPPs.

7. Conclusions

In the next decade, I think it’s very likely that two or more of the new FNPP designs will enter service.  The leading contenders seem to be Russia’s OPEB and China’s ACP100S FNPP.   It remains to be seen if economic issues and/or international nuclear regulatory / legal / political issues will stand in the way of eventual FNPP deployments to sites around the world.  

8. For more information

General

US – Sturgis

Russia

China

South Korea

Denmark – Seaborg

Other

Other FNPP designs and concepts for “transportable reactor units” (only the nuclear steam supply section of an FNPP) and seabed-sited nuclear power plants are included in my 2018 post: “Marine Nuclear Power: 1939 – 2018:” https://lynceans.org/all-posts/marine-nuclear-power-1939-2018/

The Sad Tale of New York’s “Greener Grid” and the Closure of Two Nuclear Power Plants

Peter Lobner, updated 29 July 2022

Goodbye Indian Point 2 and 3.  Your contributions of zero-carbon energy to New York’s “clean energy grid of the future” will be greatly missed.

In an average year, the 1,028-MWe Indian Point Unit 2 nuclear power plant and the 1,041-MWe Unit 3 operated at capacity factors of greater than 90% and delivered more than 18,000 GWh (thousand MWh) per year of zero-carbon electricity to the New York state electrical grid. Unit 2 was shutdown on 30 April 2020 and Unit 3 followed on 30 April 2021.  Prior to its final shutdown, Unit 3 had run continuously for 753 day, which set a new nuclear industry world record.  The ANS Newswire reported, “The plant’s closure is the result of a settlement agreement reached in 2017 by Entergy and the State of New York and environmental groups opposed to Indian Point’s operation. According to an April 28 (2021) news release from Entergy, its decision to accede to the shutdown was driven by a number of factors, including ‘sustained low current and projected wholesale energy prices that reduced revenues.’”

Now, Indian Point Units 2 and 3 are delivering exactly zero zero-carbon energy.  I imagine the environmental groups involved in the settlement agreement are hailing the shutdowns as great achievements.  I think the shutdowns represent remarkable shortsightedness (I’m using the kindest words I can think of) on the parts of Entergy and the State of New York.

New York Independent System Operator, Inc. (NYISO) operates the New York state electrical grid, which is divided into two main parts, “downstate”, which includes New York City and the Indian Point Units 2 and 3 nuclear power plants, and “upstate,” which includes the Nine Mile Point and Ginna nuclear power plants. I credit NYISO with providing the public with excellent reports that summarize their annual grid and electrical market performance.  In their Power Trends 2021 report, NYISO states: “The NYISO is committed to offering the tools, skills, independent perspectives, and experience necessary to transition to a zero-emission power system by 2040.” 

I’ll refer to two of those NYISO Power Trend reports to illustrate the impact of closing the Indian Point 2 and 3 nuclear power plants on progress toward New York’s “clean energy grid of the future.”  Using their own graphics, let’s take a look at how NYISO was doing in 2019 (with both Indian Point Unit 2 & 3 operating), 2020 (Unit 2 shutdown in April), and their projected performance in summer 2021 (after Unit 3 shutdown). 


2019:  New York statewide: 58% zero-emission; Upstate: 88% zero-emission; Downstate: 29% zero-emission

Source: NYISO Power Trends 2020

2020:  New York statewide: 55% zero-emission; Upstate: 90% zero-emission; Downstate: 21% zero-emission

Source: NYISO Power Trends 2021

2021:  New York statewide (projected, summer): 25% zero-emission; Upstate: 67% zero-emission; Downstate: 2% zero-emission

Source: NYISO Power Trends 2021

Anyone who can draw a tend chart from 2019 to 2021 using the above three years of data and then extrapolate to the State’s goal of a zero-emission power system by 2040 can see that New York’s plans for its “clean energy grid of the future” have come off the rails.  The slope of the curve to get from where NYISO is today to the State’s 2040 goal has gotten a lot steeper, and that translates directly into the cost of achieving that goal.  Surely the New York ratepayers served by NYISO will pay the price in the years ahead as the State works to improve its zero-emission performance. Even getting back to where they were in 2019 would be a big improvement.

So, I reiterate that the Indian Point Unit 2 and 3 shutdowns represent remarkable shortsightedness on the parts of Entergy and the State of New York, both of which have undervalued two reliable sources of bulk zero-emission electric power generation, and have failed to appreciate Indian Point’s potential long-term contribution to achieving the State’s 2040 zero-emission power system goal (at a rate of more than 18,000 GWh per year).  New York State has failed to step up and provide economic incentives to enable Entergy to compete effectively against fossil fuel generators that have been benefiting for more than a decade from the low cost of natural gas fuel. In the wholesale market, the fossil generators can undercut nuclear generators and drive the cost of electricity down to levels that no longer support the continued operation of zero-emission nuclear power plants.  These trends can be seen in the following NYISO chart.

Source: NYISO Power Trends 2021

Beyond the significant loss of zero-carbon electrical generation capacity, the closure of a nuclear power plant will have significant local and statewide impacts through the loss of many full-time and temporary jobs, associated wages, and income and property taxes.  You’ll find a thorough discussion of these issues in the May 2021 ANS Nuclear Newswire article, “The consequences of closure: The local cost of shutting down a nuclear power plant,” at the following link: https://www.ans.org/news/article-2877/the-consequences-of-closure-the-local-cost-of-shutting-down-a-nuclear-power-plant/

R.I.P. Indian Point Units 2 and 3.

Update – 29 July 2022

In July 2022, the American Nuclear Society reported, “Stats show that closing Indian Point was a ‘mistake’ for New York.”  I’d say that’s putting it mildly.

For more information:

Many European Union (EU) “Green Deal” Energy Advocates are Hypocrites

Updated 16 December 2019, 20 March & 5 May 2020

Peter Lobner

In a 12 December 2019 NUCNET article, David Dalton, reporting on the United Nations Framework Convention on Climate Change (COP25) in Madrid, summarized the following points made by International Atomic Energy Agency (IAEA) director-general Rafael Mariano Grossi:

  • The world is “well off the mark” from reaching the climate goals of the Paris Agreement.
  • Around two-thirds of the world’s electricity still is generated through burning fossil fuels.
  • Greater use of low-carbon nuclear power is needed to ensure the global transition to clean energy includes a baseload backup to variable renewable energy sources such as solar and wind.
  • Greater deployment of a diverse mix of low-carbon sources such as hydro, wind and solar, as well as nuclear power, and battery storage, will be needed to reverse that trend and set the world on track to meet climate goals.

I concur with these points and feel that Mr. Grossi has laid out a reasonable and responsible position on the future role of nuclear power in “green” energy solutions that are focused on the primary goal of  reducing worldwide carbon dioxide emissions.  The commercial nuclear power industry has demonstrated the ability to reliably generate carbon-free electricity, 24 hours a day, seven days a week, in units of a thousand megawatts or more per power plant.  Except for the largest hydroelectric facilities, no other component of a carbon-neutral energy infrastructure offers such capabilities, which are essential for delivering 24/7 service to large users and stabilizing the grid.  Unfortunately, Mr. Grossi’s view is not shared by many EU energy advocates seeking to get member states to agree to the EU “Green Deal.”

You can read David Dalton’s complete article here:  https://www.nucnet.org/news/nuclear-and-renewables-are-not-in-competition-with-each-other-12-4-2019

The EU Energy Union and the “Green Deal”

The European Energy Union is the implementation of the 2019 Juncker Commission’s Priority #3 recommendation for a resilient energy union with a forward-looking climate change policy.  You can read a summary of the Commission’s recommendations here: http://www.europarl.europa.eu/RegData/etudes/IDAN/2019/637943/EPRS_IDA(2019)637943_EN.pdf

The Energy Union has quite a challenge, starting with the EU’s energy mix (circa 2016) as shown in the following chart:

EU 2016 energy mix.  Source:  EU Statistical Pocketbook 2018

Complicating matters, the EU currently imports nearly 40% of its natural gas from Russia. 

The European Union’s Green Deal is described as “a new growth strategy that aims to transform the EU into a fair and prosperous society, with a modern, resource-efficient and competitive economy where there are no net emissions of greenhouse gases in 2050 and where economic growth is decoupled from resource use.”  You’ll find the EU’s 11 December 2019 detailed description of the Green Deal here: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN

For more information, see the EU “Green Deal” website here: https://ec.europa.eu/info/index_en

To enforce this “Green Deal,” the EU intends to adopt a “climate law” that is scheduled to be presented to Member States in March 2020.

The EU’s “Green Deal” is strongly biased against almost anything except renewable energy sources

On 11 December 2019, Reuters reported that, “European Union states have blocked a set of new rules governing which financial products can be called ‘green’ and ‘sustainable’, EU officials said, in a major setback for the bloc’s climate ambitions.”  The Reuters report noted that EU lawmakers wanted nuclear and fossil fuel funding clearly excluded from the definition of “green” investments. You can read this Reuters report here: https://af.reuters.com/article/commoditiesNews/idAFL8N28L3GD

This EU position is a particular problem for France, where nuclear power provided 71.7% of total French generating capacity in 2018 and about 90% of total electrical capacity was provided by low-carbon sources (nuclear + renewables).  In October 2019, Électricité de France announced that it is planning to make a decision in 2021 on building several more large nuclear power plants, which will be needed in the next decade as its oldest 900 MWe pressurized water reactor (PWR) plants start reaching their retirement age.

In contrast, nuclear power provided 11.8% of total German generating capacity in 2018 and about 47% of total electrical capacity was provided by low-carbon sources (nuclear + renewables), while 48.3% of total generating capacity was provided by a fossil fuel sources.  Germany plans to decommission the last of its seven remaining nuclear power plants, representing an aggregate of 9,256 MWe of carbon-free electric generating capacity, in the next three years, by December 2022.  It will be a challenge for new renewable energy sources to be deployed in time to make up for the lost carbon-free generating capacity from nuclear power.  It is notable that Germany gets 7% of its total generating capacity from burning biomass, which the EU, in its great wisdom, defines as a carbon-neutral renewable energy source.  More on that later.

How does the EU define “clean energy”?

The EU’s definition of “clean energy” is rather elusive.  On the EU Green Deal website, the Clean Energy fact sheet identifies the following three “key principle:” 

  • Prioritize energy efficiency and develop a power sector based largely on renewable sources
  • Secure and affordable EU energy supply
  • Fully integrated, interconnected and digitalized EU energy market

Only “renewable sources” are actually defined as sources for “clean energy.”  Nuclear power is not identified as a “clean” energy source.  I was unable to find on the EU Green Deal website any performance metrics related to “clean” energy source performance relative to carbon emissions.

Here’s the link to the EU Clean Energy Fact Sheet:  https://ec.europa.eu/commission/presscorner/detail/en/fs_19_6723

Another EU description of “clean energy” can be found the “Clean Energy for all Europeans” program, which focuses on the following:

  • Energy efficiency first, focusing on energy saving opportunities and “smarter” / “greener” buildings.
  • More renewables, with a new target of at least 32% in renewable energy by 2030
  • Better governance of the Energy Union, including a new energy “rulebook” under which each EU Member State drafts a National Energy and Climate Plan (NECP)
  • More rights for consumers to produce, store or sell their own energy
  • Smarter and more efficient electricity market

The Clean Energy for all Europeans program is described here: https://ec.europa.eu/info/news/clean-energy-all-europeans-package-completed-good-consumers-good-growth-and-jobs-and-good-planet-2019-may-22_en

The focus is on a distributed electric power infrastructure that takes advantage of many ways to improve energy efficiency, manage power consumption and generate power from distributed renewable energy sources.  Nuclear power is not mentioned at all in this document.  However, “large scale biopower” from agricultural and forest sources is addressed. 

How does the EU define “renewable energy sources”?

The latest EU directive on the promotion of energy use from renewable sources is Directive (EU) 2018/2001, dated 11 December 2018.  The definition of “renewable energy sources” traces back to Directive 2003/54/EC, dated 26 June 2003:

“Renewable energy sources” means renewable non-fossil energy sources (wind, solar, geothermal, wave, tidal, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases)

So, fossil energy sources are excluded and nuclear energy sources are not included.

This seems logical but the devil is in the details.  The main problem is that EU energy policy equates “renewable” with being “carbon free,” when, for some renewable energy sources, this is far from the truth.  As an example, existing EU policy treats burning wood fuel in power plants as carbon-neutral while this fuel generates 15 to 20% more carbon dioxide per megawatt than the coal fuel it replaces.  This has resulted in a trend among EU coal-burning power plants to switch to wood pellets and claim the emission credit while actually polluting more than before.  See my 7 January 2017 post, “Hey, EU!! Wood may be a Renewable Energy Source, but it isn’t a Clean Energy Source,” for details.  The direct link to this post is here: https://lynceans.org/all-posts/hey-eu-wood-may-be-a-renewable-energy-source-but-it-isnt-a-clean-energy-source/

Fortunately, this matter may be on its way to being addressed in an EU court.  A 4 March 2019 article by Karen Savage, writing for Climate Liability News, reports, “The suit, which was filed in the European General Court in Luxembourg, asks the court to prevent EU countries from counting forest wood as a renewable energy source under the 2018 revised Renewable Energy Directive known as RED II.”  Major sources of wood pellets used in EU power plants are in the southeast U.S., where greatly increased logging activities are depleting established, slow-growth hardwood forests.  So the EU is OK with a “clean” energy policy that, in practice, increases current pollution locally in the EU while simultaneously stripping hardwood forests in a location outside of the EU. It seems to me that this is an environmental “double whammy” that can only make sense on paper, but not in practice.  You can read Karen Savage’s article here: https://www.climateliabilitynews.org/2019/03/04/biomass-european-union-lawsuit/

Conclusions

Regarding the EU Green Deal and Energy Union, I’m certain that the devil is in the details, and EU Member States need to have the opportunity to assess these details so there is no misunderstanding when EU climate laws are passed.  

The EU’s Green Deal has major flaws and needs to be recast to acknowledge the important role that nuclear power can play as a large, carbon-free source of electric power while also helping to ensure 24/7 grid stability.  Failing to recognize the role of nuclear power as a carbon-free source of electric power will serve to highlight the strong bias and hypocrisy of an EU energy leadership that has lost its way.  It also would serve as another example of why Brexit makes sense.

Even fossil power, with appropriate advanced environmental controls, should have a role in the Green Deal.  For example, a rapid shift away from coal to natural gas would significantly decrease near-term carbon dioxide emissions.  Similarly, abandoning the laughable EU policy on “carbon-neutral” biomass would eliminate a significant source of carbon dioxide emissions within the EU, and it would save environmentally valuable hardwood forests in the southeast U.S. and elsewhere.

Update: 16 December 2019 – Finally, some common sense prevailed, but only under very intense political pressure and, probably, fear of failure

In an article by Samuel Petrequin, “EU leaders include nuclear energy in green transition,” the Associated Press reported: 

“EU heads of state and government agreed that nuclear energy will be recognized as a way to fight climate change as part of a deal that endorsed the climate target. While Poland did not immediately agree to the plan, the concessions on nuclear energy were enough for the Czech Republic and Hungary to give their approval.  The two nations had the support of France, which relies on nuclear power for 60% of its electricity. They managed to break the resistance of skeptical countries, including Luxembourg, Austria and Germany to get a clear reference to nuclear power in the meeting’s conclusions. ‘Nuclear energy is clean energy,’ Czech Prime Minister Andrej Babiš said. ‘I don’t know why people have a problem with this.’”

You can read the complete AP article here: https://apnews.com/faae3503fe497af36e8d2e9a4d13b62a

The European Council memorandum contains only a single reference to “nuclear,” more in the form of a resigned acknowledgement rather than an endorsement.  

“The European Council acknowledges the need to ensure energy security and to respect the right of the Member States to decide on their energy mix and to choose the most appropriate technologies. Some Member States have indicated that they use nuclear energy as part of their national energy mix.”

You can read the European Council memorandum here: https://www.consilium.europa.eu/media/41768/12-euco-final-conclusions-en.pdf

Congratulations to the representatives from France, Czech Republic, Hungary, Poland and others for fighting the hard political fight and winning a place for nuclear power in the EU’s Green Deal.  But be watchful because the EU anti-nuclear forces are still there.

Update:  20 March 2020 – Yes, the EU anti-nuclear forces are still there.

On 10 March 2020 the European Commission issued a press release announcing its new industrial strategy, “Making Europe’s businesses future-ready: A new Industrial Strategy for a globally competitive, green and digital Europe.”  You can read the press release and download related documents here:  https://ec.europa.eu/commission/presscorner/detail/en/ip_20_416

While the plan highlights the need to “secure a sufficient and constant supply of low-carbon energy at competitive prices,” the word “nuclear” is notably absent from the EU’s industrial strategy.  Not much of a surprise, considering the EU’s behavior on the Green New Deal.

The next day, on 11 March, the Brussels-based nuclear industry group Foratom called on the EU decision-makers to support the nuclear sector’s important role within the EU economy.  Foratom’s Director General,  Yves Desbazeille, noted, “Not only is it (nuclear) low-carbon, it is also flexible, dispatchable and cost-effective”.

Foratom highlighted the following key attributes of nuclear energy in the context of the EU industrial strategy:

  • Maintain the competitiveness of Europe’s industry as energy often accounts for a significant share of manufacturing costs,
  • Decarbonize industry and thus contribute towards the 2050 carbon neutrality target,
  • Provide industry with the energy it needs when it needs it, which is particularly important for processes which run 24/7,
  • Other industries by offering alternative sources of decarbonized energy such as hydrogen and heat (sector coupling).

You can read Foratom’s complete statement here: https://www.foratom.org/press-release/foratom-calls-for-the-eu-to-recognise-nuclear-as-a-strategic-industry/

This is further evidence that EU nuclear energy advocates are fighting an uphill battle for recognition by the entrenched EU bureaucracy that nuclear power is a zero-carbon source of power and it can make an important (and maybe essential) contribution to meeting the EU’s 2050 carbon neutrality goal.

Best wishes to Foratom in their efforts to secure a place in the EU industrial strategy for nuclear power.

Update 5 May 2020 – More support for EU nuclear power

SNETP (Sustainable Nuclear Energy Technology Platform) was established in 2007, with EC support, as a group of non-governmental organizations that promote and coordinate research on nuclear fission.  

On 24 April 2020, SNETP sent a letter, endorsed by more than 100 organizations, to the Vice-presidents of the European Commission and the EU Commissioner for Energy calling for a “just and timely assessment of nuclear energy in the EU Taxonomy of Sustainable Finance.”

When enacted, the EU’sTaxonomy Regulation is intended to be a tool to guide future energy investments by providing investors with information on which activities and technologies contribute to the EU’s sustainability goals.  In their March 2020 final recommendations, the technical expert group (TEG) currently advising the EC on sustainable energy finance did not include nuclear power as a low-carbon and sustainable electricity source.

You can download the SNETP letter and see the logos of the many endorsing organizations here:  http://www.snetp.eu/wp-content/uploads/2020/04/NGO-Civil-society-on-Taxonomy-2020.pdf

Clearly, the battle lines have formed, with the anti-nuclear elements of the EU bureaucracy on one side and organizations like Foratom and SNETP on the other.  Against the behemoth EU bureaucracy, my best wishes go out to the underdogs, Foratom, SNETP, and other organizations and individuals that understand how nuclear power can play important roles in helping the EU achieve climate neutrality by 2050.

For more information:

75th Anniversary of the Kurchatov Institute

Peter Lobner

The I. V. Kurchatov Institute of Atomic Energy in Moscow was founded 75 years ago, in 1943, and is named for its founder, Soviet nuclear physicist Igor Vasilyevich Kurchatov.  Until 1955, the Institute was a secret organization known only as “Laboratory No. 2 of the USSR Academy of Sciences.”  The initial focus of the Institute was the development of nuclear weapons.

Kurchatov Institute 75thanniversary on Russian commemorative postage stamp. https://en.wikipedia.org/

I. V. Kurchatov and the team of scientists and engineers at the Institute led or supported many important historical Soviet nuclear milestones, including: 

  • 25 December 1946: USSR’s F-1 (Physics-1) reactor achieved initial criticality at Kurchatov Institute.  This was the 1st reactor built and operated outside the US.
  • 10 June 1948: USSR’s 1st plutonium production reactor achieved initial criticality (Unit A at Chelyabinak-65). The reactor was designed under the leadership of N. A. Dollezhal.
  • 29 August 1949: USSR’s 1st nuclear device, First Lightning [aka RDS-1, Izdeliye 501 (device 501) and Joe 1], was detonated at the Semipalatinsk test site in what is now Kazakhstan.  This was the 1st nuclear test other than by the US.
  • 27 June 1954: World’s 1st nuclear power plant, AM-1 (aka APS-1), was commissioned and connected to the electrical grid, delivering power in Obninsk.  AM-1 was designed under the leadership of N. A. Dollezhal.
  • 22 November 1955: USSR’s 1st thermonuclear device (RDS-37, a two-stage device) was detonated at the Semipalatinsk test site.  This also was the world’s 1stair-dropped thermonuclear device.
  • 5 December 1957: USSR’s 1st nuclear-powered icebreaker, Lenin, was launched.  This also was the world’s 1st nuclear-powered surface ship.
  • 4 July 1958: USSR’s 1st  nuclear-powered submarine, Project 627 SSN K-3, Leninskiy Komsomol, made its 1st underway on nuclear power.
  • 1958: World’s 1st Tokamak, T-1, initial operation at Kurchatov Institute.
I. V. Kurchatov and F-1 reactor on Russian commemorative postage stamp. Source:  Wikimedia Commons

I. V. Kurchatov served as the Institute’s director until his death in 1960 and was awarded Hero of Socialist Labor three times and Order of Lenin five times during his lifetime.

After I. V. Kurchatov’s death in 1960, the noted academician Anatoly P. Aleksandrov was appointed as the director of the Institute and continued in that role until 1989.  Aleksandrov already had a key role at the Institute, having been appointed by Stalin in September 1952 as the scientific supervisor for developing the USSR’s first nuclear-powered submarine and its nuclear power unit.

A. P. Aleksandrov and OK-150 reactor on Russian commemorative postage stamp. Source:  Wikimedia Commons

Until 1991, the Soviet Ministry of Atomic Energy oversaw the administration of Kurchatov Institute.  After the formation of the Russian Federation at the end of 1991, the Institute became a State Scientific Center reporting directly to the Russian Government.  Today, the President of Kurchatov Institute is appointed by the Russian Prime Minister, based on recommendations from Rosatom (the Russian State Energy Corporation), which was formed in 2007.

You’ll find a comprehensive history of Kurchatov Institute in a 2013 (70thanniversary) special issue of the Russian version of Scientific American magazine, which you can download here:

 https://sciam.ru/download_issues/7/47.pdf

The evolution of Kurchatov Institute capabilities from its initial roles on the Soviet nuclear weapons program is shown in the following diagram.

Source: Special issue 2013, www.scientificrussia.ru

Modern roles for Kurchatov Institute are shown in the following graphic.

Source: Special issue 2013, www.scientificrussia.ru

In the past 75 years, the Kurchatov Institute has performed many major roles in the Soviet / Russian nuclear industry and, with a national security focus, continues to be a driving force in that industry sector.

Now, lets take a look at a few of the pioneering nuclear projects led or supported by Kurchatov Institute:

  • F-1 (Physics-1) reactor
  • Plutonium production reactors
  • Obninsk nuclear power plant AM-1
  • T-1 Tokamak

F-1 (Physics-1) reactor

The F-1 reactor designed by the Kurchatov Institute was a graphite-moderated, air-cooled, natural uranium fueled reactor with a spherical core about 19 feet (5.8 meters) in diameter. F-1 was the first reactor to be built and operated outside of the US.  It was a bit more compact than the first US reactor, the Chicago Pile, CP-1, which had an ellipsoidal core with a maximum diameter of about 24.2 feet (7.4 meters) and a height of 19 feet (5.8 meters).

The F-1 achieved initial criticality on 25 December 1946 and initially was operated at a power level of 10 watts.  Later, F-1 was able to operate at a maximum power level of 24 kW to support a wide range of research activities. In a 2006 report on the reactor’s 60thanniversary by RT News (www.rt.com), Oleg Vorontsov, Deputy Chief of the Nuclear Security Department reported, “Layers of lead as they are heated by uranium literally make F1 a self-controlling nuclear reactor. And the process inside is called – the safe-developing chain reaction of uranium depletion. If the temperature rises to 70 degrees Celsius (158° Fahrenheit), it slows down by its own! So it simply won’t let itself get out of control.” 

F-1 was never refueled prior to its permanent shutdown in November 2016, after 70 years of operation.

Top of the F-1 reactor core. Source: http://nuclearweaponarchive.org/
F-1 reactor facility cross-section diagram.  The F-1 reactor is the igloo-shaped structure located in the open pit.  Source: http://nuclearweaponarchive.org/
Graphite stacks of the F-1 reactor.  Source: Kurchatov Institute

Plutonium production reactors

The first generation of Soviet plutonium production reactors were graphite-moderated, natural uranium fueled reactors designed under the leadership of N.A. Dollezhal while he was at the Institute of Chemical Machinery in Moscow.  The Kurchatov Institute had a support role in the development of these reactors.The five early production reactors at Chelyabinsk-65 (later known as the Mayak Production Association) operated with a once-through primary cooling water system that discharged into open water ponds.

Simplified cross-section of a Russian graphite-moderated, water-cooled plutonium production reactor.  Source: PNL-9982

Four of the five later graphite-moderated production reactors at Tomsk had closed primary cooling systems that enabled them to also generate electric power and provide district heating (hot water) for the surrounding region.  You’ll find a good synopsis of the Soviet plutonium production reactors in the 2011 paper by Anatoli Diakov, “The History of Plutonium Production in Russia,” here:  

http://scienceandglobalsecurity.org/archive/sgs19diakov.pdf

Additional details on the design of the production reactors is contained in the 1994 Pacific Northwest Laboratory report PNL-9982, “Summary of Near-term Options for Russian Plutonium Production Reactors,” by Newman, Gesh, Love and Harms.  This report is available on the OSTI website here:   

https://www.osti.gov/servlets/purl/10173950

Obninsk nuclear power plant AM-1 (Atom Mirny or “Peaceful Atom”)

AM-1 nuclear power plant exterior view.  Source:  tass.ru
Panoramic view of the AM-1 power plant control room.  Source: www.chistoprudov.ru via https://reactor.space/news_en/

Obninsk was the site of the world’s first nuclear power plant (NPP).  This NPP had a single graphite-moderated, water-cooled reactor fueled with low-enriched uranium fuel. The reactor had a maximum power rating of 30 MWt.  AM-1 was designed by N.A. Dollezhal and the Research and Development Institute of Power Engineering (RDIPE / NIKIET) in Moscow, as an evolution of an earlier Dollezhal design of a small graphite-moderated reactor for ship propulsion.  The Kurchatov Institute had a support role in the development of AM-1.

The basic AM-1 reactor layout is shown in the following diagram.

Source: Directory of Nuclear Reactors, Vol. IV, Power Reactors, International Atomic Energy Agency, 1962

The closed-loop primary cooling system delivered heat via steam generators to the secondary-side steam system, which drove a steam turbine generator that delivered 5 MWe (net) to the external power grid.   Following is a basic process flow diagram for the reactor cooling loops.

Source: Directory of Nuclear Reactors, Vol. IV, Power Reactors, International Atomic Energy Agency, 1962

Construction on AM-1 broke ground on 31 December 1950 at the Physics and Power Engineering Institute (PEI) in Obninsk, about 110 km southwest of Moscow.  Other early milestone dates were:

  • Initial criticality:  5 May 1954
  • Commissioning and first grid connection:  26 June 1954
  • Commercial operation:  30 November 1954

In addition to its power generation role, AM-1 had 17 test loops installed in the reactor to support a variety of experimental studies. After 48 years of operation, AM-1 was permanently shutdown on 28 April 2002.

You can read more details on AM-1 in the following two articles: “Obninsk: Number One,” by Lev Kotchetkov on the Nuclear Engineering International website here:

 https://www.neimagazine.com/features/featureobninsk-number-one

“Anniversary at Obninsk: The First Commercial Nuclear Power Plant,” by Will Davis on the ANS Nuclear Café website here:

 http://ansnuclearcafe.org/2015/06/24/anniversary-at-obninsk-the-first-commercial-nuclear-power-plant/#sthash.4wTrQueH.vhtfLcPK.dpbs

The AM-1 nuclear power plant design was developed further by NIKIET into the much larger scale RBMK (Reaktor Bolshoy Moshchnosti Kanalnyy, “High Power Channel-type Reactor”) NPPs.  The four reactors at the Chernobyl NPP were RBMK-1000 reactors.

The T-1 Tokamak

Research on plasma confinement is a toroidal magnetic field began in Russia in 1951, leading to the construction of the first experimental toroidal magnetic confinement system, known as a tokamak, at Kurchatov Institute. T-1 began operation in 1958.  

T-1 Tokamak.  Source: https://www.iter.org/sci/BeyondITER

Early operation of T-1 and successive models revealed many problems that limited the plasma confinement capabilities of tokamaks.  Solving these problems led to a better understanding of plasma physics and significant improvements in the design of tokamak machines.  You’ll find a historical overview of early Soviet / Russian work on Tokamaks in a 2010 IAEA paper by V. P. Smirnov, ”Tokamak Foundation in USSR/Russia 1950–1990,” which you can read here:

 https://fire.pppl.gov/nf_50th_5_Smirnov.pdf

The basic tokamak design for magnetic plasma confinement has been widely implemented in many international fusion research machines, winning out over other magnetic confinement concepts, including the Stellarator machine championed in the US by Dr. Lyman Spitzer (see my 30 August 2017 post on Stellarators).  Major international tokamak projects include the Joint European Torus (JET) at the Culham Center for Fusion Energy in Oxfordshire, UK, the Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory in the US, the JT-60 at the Japan Atomic Energy Agency’s Naka Fusion Institute, and most recently the International Thermonuclear Experimental Reactor (ITER) being built now at the Saclay Nuclear Center in southern France.


Marine Nuclear Power: 1939 – 2018

Peter Lobner

In 2015, I compiled the first edition of a resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60thanniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955.  That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 –2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations.

Here’s a quick overview of worldwide marine nuclear in 2018.

Source: two charts by author

In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 –2018.”  Due to its present size (over 2,100 pages), the resource document now consists of the following parts, all formatted as slide presentations:

  • Part 1: Introduction
  • Part 2A: United States – Submarines
  • Part 2B: United States – Surface Ships
  • Part 3A: Russia – Submarines
  • Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications
  • Part 4: Europe & Canada
  • Part 5: China, India, Japan and Other Nations
  • Part 6: Arctic Operations

The original 2015 resource document and this updated set of documents were compiled from unclassified, open sources in the public domain.

I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.  My resource document contains a great deal of graphics from many sources.  Throughout the document, I have identified the sources for these graphics.

You can access all parts of Marine Nuclear Power: 1939 – 2018 here:

Marine Nuclear Power 1939 – 2018_Part 1_Introduction

Marine Nuclear Power 1939 – 2018_Part 2A_USA_submarines

Marine Nuclear Power 1939 – 2018_Part 2B_USA_surface ships

Marine Nuclear Power 1939 – 2018_Part 3A_R1_Russia_submarines

Marine Nuclear Power 1939 – 2018_Part 3B_R1_Russia_surface ships & non-propulsion apps

Marine Nuclear Power 1939 – 2018_Part 4_Europe & Canada

Marine Nuclear Power 1939 – 2018_Part 5_China-India-Japan & Others

Marine Nuclear Power 1939 – 2018_Part 6 R1_Arctic marine nuclear

I hope you find this resource document informative, useful, and different from any other single document on this subject.  Below is an outline to help you navigate through the document.

Outline of Marine Nuclear Power:  1939 – 2018.

Part 1: Introduction

  • Quick look:  Then and now
  • State-of-the-art in 1955
  • Marine nuclear propulsion system basics
  • Timeline
    • Timeline highlights
    • Decade-by-decade
  • Effects of nuclear weapons and missile treaties & conventions on the composition and armament of naval fleets
  • Prospects for 2018 – 2030

Part 2A: United States – Submarines

  • Timeline for development of marine nuclear power in the US
  • US current nuclear vessel fleet
  • US naval nuclear infrastructure
  • Use of highly-enriched uranium (HEU) in US naval reactors
  • US submarine reactors and prototype facilities
  • US Navy nuclear-powered submarines
    • Nuclear-powered fast attack submarines (SSN)
      • Submarine-launched torpedoes, anti-submarine missiles & mines
      • Systems to augment submarine operational capabilities
    • Nuclear-powered strategic ballistic missile submarines (SSBN)
      • Submarine-launched strategic ballistic missiles (SLBMs)
    • Nuclear-powered guided missile submarines (SSGN)
      • Cruise missiles and other tactical guided missiles
    • Nuclear-powered special operations submarines

Part 2B: United States – Surface Ships

  • US naval surface ship reactors & prototype facilities
  • US Navy nuclear-powered surface ships
    • Evolution of the US nuclear-powered surface fleet
    • Nuclear-powered guided missile cruisers (CGN)
      • CGN tactical weapons
    • Nuclear-powered aircraft carriers (CVN)
      • Carrier strike group (CSG) & carrier air wing composition
  • Naval nuclear vessel decommissioning and nuclear waste management
  • US civilian marine nuclear vessels and reactors
    • Operational & planned civilian marine vessels and their reactors
    • Other US civilian marine reactor designs
  • Radioisotope Thermoelectric Generator (RTG) marine applications
  • US marine nuclear power current trends

Part 3A: Russia – Submarines

  • The beginning of the Soviet / Russian marine nuclear power program
  • Russian current nuclear vessel fleet.
  • Russian marine nuclear reactor & fuel-cycle infrastructure
  • Russian nuclear vessel design, construction & life-cycle infrastructure
  • Russian naval nuclear infrastructure
  • Russian nuclear-powered submarines
    • Submarine reactors
    • Nuclear-powered fast attack submarines (SSN)
      • Submarine-launched torpedoes & anti-submarine missiles
    • Strategic ballistic missile submarines (SSB & SSBN)
      • Submarine-launched ballistic missiles (SLBM)
    • Cruise missile submarines (SSG & SSGN).
      • Cruise missiles
    • Nuclear-powered special operations subs & strategic torpedoes
    • Other special-purpose nuclear-powered subs
    • Examples of un-built nuclear submarine projects

Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications

  • Russian nuclear-powered surface ships
    • Surface ship reactors
    • Nuclear-powered icebreakers
    • Nuclear-powered naval surface ships
      • Nuclear-powered guided missile cruisers
      • Nuclear-powered command ship
      • Nuclear-powered aircraft carrier
      • Nuclear-powered multi-purpose destroyer
  • Russian non-propulsion marine nuclear applications
    • Small reactors for non-propulsion marine nuclear applications
    • Floating nuclear power plants (FNPP)
    • Transportable reactor units (TRU)
    • Arctic seabed applications for marine nuclear power
    • Radioisotope Thermoelectric Generators (RTG)
  • Marine nuclear decommissioning and environmental cleanup
  • Russian marine nuclear power current trends

Part 4: Europe & Canada

  • Nations that operate or have operated nuclear vessels
    • United Kingdom
      • The beginning of the UK marine nuclear power program
      • UK current nuclear vessel fleet
      • UK naval nuclear infrastructure
      • UK naval nuclear reactors
      • UK Royal Navy nuclear-powered submarines
        • Nuclear-powered fast attack submarines (SSN)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile submarines (SSBN)
          • Submarine-launched ballistic missiles (SLBM)
      • UK disposition of decommissioned nuclear submarines
      • UK nuclear surface ship and marine reactor concepts
      • UK marine nuclear power current trends
    • France
      • The beginning of the French marine nuclear power program
      • French current nuclear vessel fleet
      • French naval nuclear infrastructure
      • French naval nuclear reactors
      • French naval nuclear vessels
        • Nuclear-powered strategic ballistic missile submarines (SNLE)
          • Submarine-launched ballistic missiles (MSBS)
        • Nuclear-powered fast attack submarines (SNA)
          • Submarine-launched tactical weapons
        • Nuclear-powered aircraft carrier
      • French disposition of decommissioned nuclear submarines
      • French non-propulsion marine reactor applications
      • French marine nuclear power current trends
    • Germany
  • Other nations with an interest in marine nuclear power technology
    • Italy
    • Sweden
    • Netherlands
    • Canada

Part 5: China, India, Japan and Other Nations

  • Nations that have operated nuclear vessels
    • China
      • The beginning of China’s marine nuclear power program
      • China’s current nuclear vessel fleet
      • China’s naval nuclear infrastructure
      • China’s nuclear vessels
        • Nuclear-powered fast attack submarines (SSNs)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile subs (SSBNs)
          • Submarine-launched ballistic missiles (SLBMs)
        • Floating nuclear power stations
        • Nuclear-powered surface ships
      • China’s decommissioned nuclear submarine status
      • China’s marine nuclear power current trends
    • India
      • The beginning of India’s marine nuclear power program
      • India’s current nuclear vessel fleet
      • India’s naval nuclear infrastructure
      • India’s nuclear-powered submarines
        • Nuclear-powered fast attack submarines (SSNs)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile submarines (SSBNs)
          • Submarine-launched ballistic missiles (SLBM).
      • India’s marine nuclear power current trends
    • Japan
  • Other nations with an interest in marine nuclear power technology
    • Brazil
    • North Korea
    • Pakistan
    • Iran
    • Israel
    • Australia

Part 6: Arctic Operations

  • Rationale for marine nuclear power in the Arctic
  • Orientation to the Arctic region
  • US Arctic policy
  • Dream of the Arctic submarine
  • US marine nuclear Arctic operations
  • UK marine nuclear Arctic operations
  • Canada marine nuclear ambitions
  • Russian marine nuclear Arctic operations
    • Russian non-propulsion marine nuclear Arctic applications
  • China’s marine nuclear ambitions
  • Current trends in marine nuclear Arctic operations

Periodic updates:

  • Parts 3A and 3B, Revision 1, were posted in October 2018
  • Part 6, Revision 1, was posted in February 2019

Thorium: What’s Old is New Again

Peter Lobner

Development of the uranium-thorium fuel cycle in the U.S began in the late 1940s, encouraged by the abundance of thorium, the ability to convert thorium into fissile uranium during reactor operation, and the prospects for a closed fuel cycle with good economics.  The commercial potential of thorium has yet to be realized.

Today, there is renewed interest in thorium as an abundant, cheap nuclear fuel source that can be employed in the context of a variety of proliferation-resistant nuclear fuel cycles.

1. In the beginning:

Alvin Weinberg is generally considered in the U.S. to be “father” of the pressurized water reactor (PWR), which has become the dominant type of nuclear reactor employed in commercial power generation and in naval reactors.  On 18 September 1944, Weinberg first described the basis for a PWR, with ordinary water as both coolant and moderator operating at high pressure, and producing steam for power production.

Dr. Alvin Weinberg. Source: Oak Ridge National Laboratory

On 10 April 1946, Weinberg and F. H. Murray (Oak Ridge, Clinton Laboratory) published, “High-Pressure Water as a Heat-Transfer Medium in Nuclear Power Plants,” in which the design characteristics of a water-cooled and moderated PWR were presented.  Interestingly, this PWR concept had a thorium-converter core, which used 233U as the fissile “seed” and thorium as the fertile “blanket” to breed more 233U during reactor operation.  This was similar in concept to the thorium-breeder core installed in the Shippingport commercial power reactor nearly 30 years later under the Department of Energy’s (DOE) Light Water Breeder Reactor (LWBR) Program.

The neutron absorption and decay chains for converting natural thorium (232Th) into fissile uranium (233U and 235U) are shown in the following diagram.

Source:  WAPD-TM-1387

Production of 233U through the neutron irradiation of 232Th invariably produces small amounts of 232U as an impurity (not shown in the above diagram), because of parasitic (n,2n) reactions on 233U itself, or on Pa233(protactinium), or on 232Th. The decay chain of 232U quickly yields strong gamma radiation emitters.  This characteristic is one aspect of the proliferation resistance of thorium fuel cycles.

2. Early commercial power reactors with thorium-converter cores

 In the U.S., thorium-converter cores were operated in five commercial power reactors between 1962 and 1989:

  • Indian Point 1 PWR
  • Elk River boiling water reactor (BWR)
  • Shippingport LWBR
  • Peach Bottom 1 high-temperature gas-cooled reactor (HTGR)
  • Fort St. Vrain HTGR

A brief overview of these commercial power reactors follows.  In retrospect, none would be judged as commercial successes.

Indian Point 1 thorium-converter Core 1 (1962 – 1974)

The first commercial use of a thorium-converter “seed-and-blanket” core was in the Indian Point 1 pressurized water reactor designed by Babcock & Wilcox. Construction started in New York in May 1956 and the plant was commissioned in October 1962.

Indian Point 1, circa 1963. Source: USDOE, https://commons.wikimedia.org/

Indian Point 1 nuclear plant cross-section.   Source: Atomic Power Review, http://atomicpowerreview.blogspot.com/2013/02/carnival-145.html

Indian Point 1 was one of very few nuclear plants to incorporate fossil fired superheat to supplement the reactor power. In the cross-section view above, you can see the two oil-fired superheaters placed between the reactor and the turbine generator.  In its original configuration, Indian Point 1 had a net electrical output of 255 MWe, of which 104 MWe was derived from the fossil-fired superheaters.

Core 1 was rated at 585 MWt.  This was the only thorium converter core; highly-enriched (93%) 235U was used as the seed material. This core consisted of 120 fuel assemblies arranged in three concentric zones, each with differing UO2– ThO2ratios.  The central zone had the lowest uranium content.  Core loading was about 1,300 kg (2,425 pounds) of UO2(1,100 kg of U-235) and 17,207 kg (37,935 pounds) of ThO2.

The zoned core and fuel element layout are shown below.

Source:  Directory of Nuclear Reactors, Volume IV, Power Reactors, International Atomic Energy Agency, 1962

Subsequent cores used low-enriched UO2fuel and were rated at a somewhat higher power, 615 MWt.  Core 2 was installed between the last quarter of 1965 and the first quarter of 1966, after three years of operation on the thorium-converter Core 1. With the all-UO2Core 2, the plant’s net electrical output was raised to 265 MWe.

Seventeen tons of stainless steel-clad thorium oxide pellet fuel from Core 1 were reprocessed at the privately owned and operated Nuclear Fuel Services plant at West Valley, New York.  This was the first commercial spent fuel reprocessing plant in the U.S.

The Indian Point 1 nuclear plant was shutdown in October 1974, after 12 years of operation.

Elk River thorium-converter core (1964 – 1968)

This small boiling water reactor (BWR) demonstration plant was developed by Allis-Chalmers and built in Minnesota. The reactor core, which was rated at 58.2 MWt, was a highly-enriched (93%) 235U / thorium converter.  Core loading was about 208 kg (459 pounds) of UO2and 4,300 kg (9,480 pounds) of ThO2in 148 fuel assemblies.

Like Indian Point 1, Elk River incorporated fossil fired superheat to supplement the reactor power.  The plant’s total thermal power was 73 MWt, yielding a net electrical output of 22 MWe. The general plant layout is shown below.

Source: http://atomicpowerreview.blogspot.com/2011/09/apr-atomic-journal-elk-river-1.html

The Elk River nuclear plant only operated from 1 July 1964 to 1 February 1968.  Subsequently, the plant was decommissioned. Some of the spent nuclear fuel was sent to the Trisaia facility in southern Italy for reprocessing as part of a thorium fuel cycle research program supported by the Italian National Committee for Nuclear Energy.  This pilot plant was operated during 1970s to process the uranium-thorium cycle fuels

Shippingport Light Water Breeder Reactor (LWBR, 1977 – 1982)

The LWBR Program, which was run for the Department of Energy (DOE) by the Office of Naval Reactors, was conducted to demonstrate the capability of the 233U/ thorium fuel system for use in a breeder reactor core that could be deployed in conventional light water reactor plants.  The LWBR core was installed in the Shippingport reactor and started operation in the fall of 1977.  Operation with the LWBR core finished on October 1, 1982.

Considerable experience was gained in fabricating the fuel for the LWBR core. This reactor used 233U / thorium instead of 235U / thorium as used in the Indian Point 1 and Elk River thorium converter cores.  The 233U needed for the LWBR was recovered from previously irradiated thorium using existing PUREX reprocessing equipment, which was designed for recovering uranium, but was not suitable for thorium recovery.  About 1,100 kg (2,425 pounds) of 233U was processed in pilot-plant scale equipment at Oak Ridge National Laboratory (ORNL) to produce the reactor-grade UO2needed for the LWBR core.  Fortunately, the 232U content of the uranium (note: 232U is a byproduct formed during thorium irradiation) was less than 10 ppm and remotely operated facilities with heavy shielding were not required to protect against high-energy gamma radiation from the 232U decay chain.

The basic LWBR seed-and-blanket core layout is shown in the following diagram:

Source:  INEEL/EXT-98-00799, Rev. 1, “Fuel Summary Report: Shippingport Light Water Breeder Reactor,” January 1999

LWBR fuel modules consisted of a hexagonal seed module inside an annular blanket module. The movable seed modules started life below the blanket modules and traveled vertically upward through the hexagonal passages in the blanket modules during core life. Core reactivity was controlled by changing the axial position of seed modules within the surrounding blanket modules, thus eliminating parasitic loss of neutrons to conventional poison control rods.

In the March 1986 report, “Shippingport Operations With the Light Water Breeder Reactor Core,”WAPD-TM-1542, Bettis Atomic Power Laboratory reported the following results:

“The Shippingport Station during LWBR operation demonstrated flexibility and load change response characteristics superior to those found in non-nuclear steam generating stations and the availability of the LWBR reactor compared very favorably with conventional light water reactors. The core operated for five years accumulating 29,047 effective full power hours (EFPH), far beyond the design goal of 15,000 EFPH. At the end of this period, the core was removed and the spent fuel shipped to the Naval Reactors Expended Core Facility in Idaho for a detailed examination to verify core performance, including an evaluation of breeding characteristics.”

Westinghouse reported the breeding performance of the reactor as follows (WAPD-T-3007, October 1993):

“Nondestructive assay of 524 fuel rods and destructive analysis of 17 fuel rods determined that 1.39% more fissile fuel was present at the end of core life than at the beginning, thereby establishing that breeding had occurred. Successful LWBR power operation to over 160% of design lifetime demonstrated the performance capability of this fuel system.”

The LBWR spent fuel was not reprocessed.

High-temperature Gas-Cooled Reactors (HTGRs, 1967 – 1989)

Three U.S. HTGRs and two German HTGRs have operated with U-Th coated particle fuel.

  • Peach Bottom 1 (1967 – 1974)
    • 40 MWe General Atomics HTGR operated in Pennsylvania
    • Used highly-enriched 235U / thorium fuel in the form of microspheres of mixed thorium-uranium carbide coated with pyrolytic carbon. These microspheres were embedded in annular graphite segments that were arranged into fuel elements.
  • Fort St. Vrain (1976 – 1989)
    • 330 MWe General Atomics HTGR operated in Colorado
    • Used highly-enriched 235U / thorium fuel in the form of TRISO and BISO microspheres coated with pyrolytic carbon, which were embedded in a graphite matrix and placed in prismatic graphite fuel elements.  The TRISO fuel particles were highly-enriched 235U and the BISO fuel particles were thorium.
    • Almost 25 tonnes (25,000 kg, 55,155 pounds) of thorium was used in fuel for the reactor.
  • Thorium High Temperature Reactor (THTR, 1983 – 1989)
    • 300 MWe pebble-bed reactor operated in Germany.
  • AVR (1967 – 1988)
    • 15 MWe pebble-bed reactor operated in Germany.
    • AVR was the first reactor based on the circa 1945 – 46 concept of the “Daniels Pile” by Farrington Daniels, the inventor of pebble bed reactors.

In the U.S., General Atomics originally planned to have HTGR spent fuel reprocessed to recover useful material, including 233U, which would have been recycle in HTGR fuel. The planned back-end of the fuel cycle included a step to separate the TRISO and BISO particles, thereby simplifying the downstream reprocessing steps for uranium and thorium.

No commercial HTGRs were built in the U.S. after Fort St. Vrain and the back-end of the HTGR U-Th fuel-cycle was never developed.  Spent fuel from the operating U.S. HTGRs was not reprocessed. DOE took title to the spent fuel and became responsible for managing its temporary storage at the Fort St. Vrain site.

3. Reprocessing spent uranium – thorium fuel *

By the early 1950s, several kilograms of purified 233U had been recovered from experimental lots of irradiated thorium, and two chemical processing flowsheets based on solvent extraction techniques had been developed and tested in small-scale operations.

The THOREX process was developed in the mid-1950s for reprocessing 233U – thorium fuel.  By the mid-to-late 1950s, the THOREX Pilot Plant Demonstration Program had been completed, and 35 tons of irradiated thorium metal had been processed in a facility with a throughput of 150 to 200 kg of thorium per day to recover 55 kg of purified 233U. The principal emphasis was on demonstrating the THOREX flowsheet, defining flowsheet capabilities, and identifying problem areas in the reprocessing of spent U-Th fuel.

During the 1960s, approximately 870 tons of thorium (primarily as ThO2) was irradiated. This thorium was then processed in production scale equipment to recover 1.4 tons of purified233U. The large-scale programs at Savannah River Plant (SRP) and Hanford utilized either the THOREX Flowsheet or a modified version of it (i.e., the Acid THOREX flowsheet) to effect the separation and recovery of 233U and thorium.

In the late 1970s, a total of 28 metric tons of fabrication scrap generated during the preparation of LWBR fuel was recycled in large-scale solvent extraction facilities to recover the 233U. The ability to dissolve advanced ThO2-containing fuels was an important step in demonstrating the reprocessing of spent fuel in a U-Th fuel cycle.

The DOE HTGR Fuel Recycle Program supported research and development for reprocessing HTGR fuel, focusing on small, engineering-scale tests.  No pilot- or full-scale reprocessing facility was built.

In April 1977, President Carter terminated federal support for reprocessing in an attempt to limit the proliferation of nuclear weapons material. The U.S. nuclear fuel cycle became the once-through fuel cycle we have today.

*          Source: “THOREX Reprocessing Characterization,” International Nuclear Fuel Cycle Evaluation (INFCE), 1978

4. The Radkowsky Thorium Reactor (RTR) concept

 Alvin Radkowsky, who was recruited by Admiral Rickover in 1947, later served as the Chief Scientist of the Naval Reactors program. He was responsible for originating and assisting in the development of two reactor concepts for which he was awarded the Navy’s Distinguished Civilian Award (the highest non-military award) in 1954 and the Atomic Energy Commission (AEC) Citation (1963):

  • Burnable poison, which is important to all nuclear power plants for managing long-term reactivity control, and is especially important for enabling very long life naval reactor cores.
  • Seed and blanket reactor core, which consists of a highly enriched fuel “seed” section surrounded by a “blanket” of fertile natural uranium. The blanket generates more than half of the reactor power and has a very long life relative to the “seed” section, which is replaced more frequently.

Alvin Radkowsky receives award from Admiral Hyman Rickover.  A diagram of the Shippingport reactor with a seed-and-blanket core is in the background. Source:  Thorium Power, Inc.

With the encouragement of Edward Teller, Alvin Radkowsky developed a long-standing interest in the use of thorium in nuclear reactors as a means to improve resistance to the proliferation of nuclear material suitable for making weapons. He held several patents in the field, which he assigned to the company he helped found in 1992, Thorium Power, Inc.

The Radkowsky Thorium Reactor concept developed by Alvin Radkowsky and Thorium Power makes use of a seed-and-blanket geometry with low-enriched (< 20%) 235U as the initial fissile seed material and thorium as the fertile blanket material.  Unlike Indian Point 1 and the LWBR, which separated the seed and blanket elements into zones in the core, the RTR implements the seed-and-blanket concept at the level of individual fuel assemblies that are designed to replace the fuel assemblies in existing reactors, but require a complex process to manage fuel during refueling outages. Radkowsky described his RTR fuel design concept as follows:

“Basically, seeds are treated similarly to the standard PWR assemblies. i.e., approximately one-third of seeds are replaced annually by “fresh” seeds, and the remaining two-thirds (partially depleted) seeds are reshuffled. Each seed is loaded into an “empty” blanket, forming a new fuel type. These new fuel type (fresh) assemblies are reshuffled together with partially depleted SBU (seed-blanket) assemblies to form a reload configuration for the next cycle.……..the Th-blanket in-core residence time is quite long (about 10 years), while the uranium part of the SBU (seed) is replaced on a annual (or 18 month) basis, similar to standard PWR fuel management practice.”

You can read his paper entitled, “Thorium Fuel for Light Water Reactors – Reducing Proliferation Potential of Nuclear Power Fuel Cycle,”here:

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/023/28023771.pdf

The RTR seed-and-blanket fuel assembly concept and the simpler zoned seed-and-blanket core concept are well illustrated in the following figure from an article by Mujid S. Kazimi entitled, “Thorium Fuel for Nuclear Energy.”  The RTR core and the seed-and-blanket arrangement of the fuel rods in an individual fuel assembly are shown at the top of the diagram.  A more conventional seed-and-blanket core with separate seed and blanket assemblies is shown at the bottom of the diagram.

You can read Mujid Kazimi’s complete article on the American Scientist website here:

https://www.americanscientist.org/sites/americanscientist.org/files/200582141548_306.pdf

The September / October 1997 issue of the The Bulletin of the Atomic Scientists contains an article by John S. Friedman entitled, “More power to thorium?” in which the author offered the following comments on the RTR:

“The Radkowsky design avoids recycling by envisioning a complex fuel core in which uranium “seeds” enriched to about 20 percent uranium 235 are kept separate from a surrounding thorium-uranium “blanket.” The uranium 235 produces the neutrons that sustain the chain reaction while slowly creating uranium 233 in the blanket. As burnup continues, the newly created uranium 233 picks up an increasingly greater share of the fission load.”

“As in any uranium-fuel reactor, the uranium portion of the core would produce plutonium, but in lesser quantities than in a conventional reactor and with far higher isotopic contamination (from Pu-238, which is a strong alpha radiation emitter). The latter characteristic would make the plutonium even less desirable for weapons than is ordinary reactor-grade plutonium, argues Radkowsky. That would make his reactor exceptionally unattractive to would-be weapons makers. Although uranium 233 can be used for weapons, it too would be isotopically contaminated (from U-232, which is a strong, high-energy gamma radiation emitter), making its use in weapons unlikely.”

“The main selling point of the Radkowsky concept, according to Grae, is that the reactor ‘helps sever the link between nuclear power generation and nuclear weapons.’ The new reactor, he says, will help fulfill the mandate of the Nuclear Non-Proliferation Treaty, which calls not only for a halt in the proliferation of nuclear weapons, but also for the transfer of peaceful nuclear technology.”

You can read John Friedman’s complete article here:

https://ltbridge.com/wp-content/uploads/2017/08/19.pdf

Thorium Power, Inc. has worked with Kurchatov Institute, Brookhaven National Laboratory and others to design and analyze the use of hexagonal RTR-type thorium-plutonium fuel assemblies that could replace the standard fuel assemblies in Russian-designed VVER-1000 PWRs.  Analysis in 2001 indicated that large quantities of weapons-grade plutonium could be consumed over the 40 year operating life of a VVER-1000 reactor.

5. Molten salt thorium reactors

Molten salt reactors (MSRs) use molten fluoride salts as the primary coolant.  The main MSR concept is to have the fuel dissolved in the coolant as a fuel salt that is continuously circulated through the primary system and into a “reactor vessel” where a controlled criticality is maintained to produce useful power. The system operates at high temperature and low pressure.  The MSR concept could include provisions for on-line cleanup and reprocessing of the circulating fuel salt.

In the U.S., the DOE conducted an MSR program from 1957 to 1976. The small 8 MWt test reactor known as Molten Salt Reactor Experiment (MSRE) ran two campaigns at ORNL; the first campaign (1965 – 68) ran with 235U and the second campaign (1968 – 1969) ran with imported (not bred) 233U.  Thorium was not used in MSRE.

MSRE demonstrated the feasibility of the MSR concept and provided the technical basis for designing an MSR breeder using thorium with a graphite moderator in a core operating on thermal neutrons.  The MSR breeder never got past the study phase.

The Generation IV (Gen IV) International Forum, which was initiated by the U.S. Department of Energy in 2000, has been promoting a fast-spectrum molten salt reactor (MSFR) with dissolved 233U and thorium fuel. The Gen IV MSR power system concept is shown in the following diagram.  Construction and operation of any Gen IV reactor concept is decades away.

Source:  Gen IV International Forum.  https://www.gen-4.org/gif/jcms/c_42150/molten-salt-reactor-msr

In August 2017, the Salt Irradiation Experiment (SALIENT) began operation at the Petten High Flux Reactor in the Netherlands.  This is the first in-reactor experiment with molten salt in about 40 years. SALIENT will conduct tests on thorium molten salt in an actual reactor environment. The results of the SALIENT tests are intended to support future development of a European MSR thorium breeder reactor. You can read the Petten announcement here:

https://articles.thmsr.nl/petten-has-started-world-s-first-thorium-msr-specific-irradiation-experiments-in-45-years-ff8351fce5d2

6. India’s thorium fuel plan

 India is the only country in the world that has established a fully committed thorium program.  Because India is outside the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) due to its nuclear weapons program, it was for 34 years largely excluded from trade in nuclear plants and materials, which hampered its development of civil nuclear energy. Due to this trade ban and lack of indigenous uranium, India has been developing a unique nuclear fuel cycle to exploit its reserves of thorium. India has the second largest known reserve of thorium in the world (Australia is #1). In September 2008, the international Nuclear Suppliers Group (NSG) issued a waiver, which allowed India to commence international nuclear trade.  This has secured access to a uranium supply chain and opened the Indian nuclear market to various LWR commercial power plants from international suppliers.

India has developed a three-stage thorium fuel plan that involves three types of reactors and a closed nuclear fuel cycle.

  • Stage 1: Deployment of indigenous pressurized heavy-water reactors (PHWRs) to produce plutonium.
    • The PHWR designed by Bhabha Atomic Research Centre (BARC) is a horizontal pressure tube / calandria reactor using natural uranium dioxide (UO2) fuel and heavy water as moderator and coolant.
    • India currently operates 18 PHWRs power plants, with generating capacities between 100 to 540 MWe.
    • Four 700 MWe PHWRs are under construction.
    • At least 16 more 700 MWe PHWRs are planned.
    • In the mid-1990s, India began using thorium in fuel assemblies in PHWR initial cores to even out the core power distribution (flux flattening) to allow the reactor to operate at full power in its initial phase of operation.

You’ll find a detailed description of India’s PHWR here:

https://www.iaea.org/NuclearPower/Downloads/Technology/meetings/2011-Jul-4-8-ANRT-WS/2_INDIA_PHWR_NPCIL_Muktibodh.pdf

  • Stage 2: Deployment of indigenous fast-neutron reactors with blankets containing uranium and thorium to breed new fissile material (Pu and 233U).
    • The Prototype Fast Breeder Reactor (PFBR) designed by the Indira Gandhi Centre for Atomic Research is a sodium-cooled pool-type reactor rated at 500 MWe.
    • The PFBR initially will be fueled with a plutonium-uranium mixed oxide (PuO2– UO2) fuel.
    • PFBR is nearing completion at the Madras Atomic Power Station in Kalpakkam. Commissioning is expected in early-to-mid 2018 and commercial power generation may occur by end of 2018.
    • The Indian government in 2013 approved construction at Kalpakkam of fuel cycle facilities to recover plutonium and uranium, to be ready in time to process the first used fuel from the PFBR.
    • After PFBR, India plans to build six larger fast breeder reactors rated at 600 MWe.

You’ll find a description of the PFBR and the fast reactor fuel cycle at the following links:

http://fissilematerials.org/library/igcar03.pdf

and,

http://www.theenergycollective.com/dan-yurman/2410617/india-commits-fast-reactor-fuel-cycle-facility-u-233

  • Stage 3: Deployment of advanced heavy-water reactors (AHWR) designed by BARC to demonstrate commercial utilization of thorium.
    • The AHWR is a 300 MWe, vertical pressure tube type, boiling light water cooled, heavy water moderated reactor.
    • The fuel material will use Th-Pu MOX and Th-U MOX, where the uranium may be 233U or LEU 235U.  Development of Th-Pu and 233U-Th MOX fuels was initiated in 2001.
    • The reactor is configured to obtain a significant portion of power by fission of 233U derived from in-situ conversion from 232Th. On an average, about 39% of the power will be obtained from thorium.
    • One AHWR prototype currently is planned.  Start of construction has been delayed several times since it was first announced in 2004.  Start of construction in 2018 is possible.
    • BARC claims that the AHWR will have a one hundred year design life.

You’ll find more information on the AHWR at the following links:

http://www.barc.gov.in/reactor/ahwr.pdf

and,

https://aris.iaea.org/PDF/AHWR.pdf

7. Summary

So, there you have it.  Early experience with thorium fuel provided a technical proof-of-concept demonstration of thorium fueled reactors, but was not a commercial success.  A complete closed fuel cycle with thorium has never been demonstrated.

The key factor driving the resurgence of international interest in thorium is the proliferation resistance of the Th-U and Th-Pu fuel cycles.  The key factors driving India’s interest in thorium are the abundance of thorium and shortage of uranium in that nation coupled with India’s three-stage thorium fuel plan, which was developed to counter its long-term isolation from international trade in nuclear plants and materials as a consequence of not signing the NPT.

Work in Russia on Radkowsky Thorium Reactor (RTR) fuel elements and renewed work on a thorium molten salt reactor (MSR) in Europe certainly are encouraging.  However, there’s a long road (decades) from where these projects stand today and actual thorium utilization in a commercial nuclear power plant.  The most promising near-term (within a decade) demonstration of commercial utilization of thorium will be India’s AHWR and the associated thorium closed fuel cycle.

Additional resources on thorium:

“Nuclear Power in India”, World Nuclear Association:  http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/india.aspx

CHEUK WAH LAU, “Improved PWR Core Characteristics with Thorium-containing Fuel”, Thesis for the Degree of Doctor of Philosophy, 2014:  https://www.kth.se/polopoly_fs/1.597223!/Improved%20PWR_Cheuk%20Wah%20Lau.pdf

Michael J. Higatsberger, “The Non-Proliferative Commercial Radkowsky Thorium Fuel Concept,”November 1999:  https://ltbridge.com/wp-content/uploads/2017/08/16.pdf