Benford's Law

David Groce Lyncean Group March 23, 2005

What do these have in common?

- SAIC's 2004 Annual Report
- Bill Clinton's 1977 to 1992 Tax Returns
- Monte Carlo results from Bill Scott
- Compound Interest
 Fibonacci Numbers
- NIST (old NBS) Table of Physical Constants
- Populations of California & Colorado Counties

What is Benford's Law?

Let's go back to 1881

1881 Simon Newcomb

1835—1909

- "... had risen from rags to intellectual riches."
- Computer in National Almanac Office
- Studied Phrenology
- Director, National Almanac Office
- Professor Math & Astronomy, Johns Hopkins
- Most famous American astronomer of the times
- Measured speed of light with Michaelson
- Economist
 - Developed Quantity Theory of Money MV = PT
- President of most of the Scientific Societies
- First Bruce Medalist (1898)

Simon Newcomb

- Noticed first pages of log tables dirtier than last pages 1)
- 2) Concluded that numbers beginning with 1, 2 & 3s were looked up more often than those beginning with 7, 8 & 9s
- Conjectured: probability of initial digits in a number followed 3)

Published: Amer J Math <u>4</u>, 1881 (pp 39-40) 4)

$P(d) = \log_{10}(1 + 1/d);$ where: $d = 1,2,3,4,5,6,7,8,9$							1/									
and $\sum P(d) = 1$																
Published: Amer J Math <u>4</u> , 1881 (pp 39-40)																
									`	~						
	C. K. S. M. N.	Card I	5	1.00	Pales i	1	6	É							1	
	e i	3	Nam	100 1	04 1.00	0.00	091	~				_				
1		0°.	0° 16'	Num.	04. 10	1	2	3	4	5	6	7	8	9		1. 1. 1.
		40"	40" 41 42 43	1000 1001 1002 1003	001 0000 4341 8677 001 3009	0434 4775 9111 3442	086 <u>9</u> 5208 9544 3875	130 <u>3</u> 5642 9977 4308	1737 6076 •0411 4741	2171 6510 •0844 5174	260 <u>5</u> 6943 •1277 5607	303 <u>9</u> 7377 • 1710 6039	347 <u>3</u> 7810 •2143 6472	3907 8244 •2576 6905		
			44 45 46 47 8	1004 1005 1006 1007 1008	7337 002 166 <u>1</u> 598 <u>0</u> 003 0295 4605	7770 209 <u>3</u> 6411 0726 5036	8202 2525 6843 1157 5467	863 <u>5</u> 2957 727 <u>5</u> 1598 589 <u>8</u>	9067 3389 7706 2019 6328	9499 3821 8138 2451 6759	993 <u>2</u> 425 <u>3</u> 8569 288 <u>2</u> 719 <u>0</u>	•0364 4685 9001 3313 7620	•0796 5116 9432 3744 8051	•1228 5548 9863 4174 8481		
	N	41″	49 50" 51 52 53	1009 1010 1011 1012 1013	891 <u>2</u> 004 321 <u>4</u> 751 <u>2</u> 005 1805 6094	9342 364 <u>4</u> 7941 2234 6523	9772 407 <u>4</u> 837 <u>1</u> 266 <u>3</u> 6952	•020 <u>3</u> 450 <u>4</u> 8800 3092 7380	+0633 4933 9229 3521 7809	•1063 5363 9659 3950 8238	•1493 579 <u>3</u> •0088 4379 8666	•192 <u>4</u> 622 <u>3</u> •0517 4908 9094	•235 <u>4</u> 6652 •0947 5237 9523	+278 <u>4</u> 7082 +137 <u>6</u> 566 <u>6</u> 9951		
2		*	54 55 56 57 58	1014 1015 1016 1017 1018	006 038 <u>0</u> 4660 8937 007 3210 7478	080 <u>8</u> 5088 9365 3637 7904	1236 5516 9792 4064 8331	1664 5944 •0219 4490 8757	2092 6372 •0647 4917 9184	252 <u>1</u> 6799 •107 <u>4</u> 534 <u>4</u> 9610	294 <u>9</u> 7227 •1501 5771 •0037	337 <u>7</u> 765 <u>5</u> •1928 619 <u>8</u> •0463	380 <u>5</u> 8082 •2355 6624 •0889	423 <u>3</u> 851 <u>0</u> •2782 7051 •131 <u>6</u>		
		42"	59 17' 1" 2 3	1019 1020 1021 1022 1023	008 174 <u>2</u> 009 0257 450 <u>9</u> 8756	2168 6427 068 <u>3</u> 493 <u>4</u> 918 <u>1</u>	2594 6853 1108 5359 9605	3020 727 <u>9</u> 1533 5784 •003 <u>0</u>	3446 7704 1959 6208 •0454	3872 8130 238 <u>4</u> 6633 •0878	4298 855 <u>6</u> 280 <u>9</u> 705 <u>8</u> •130 <u>3</u>	4724 8981 3234 7483 •1727	5150 9407 3659 7907 *2151	557 <u>6</u> 9832 4084 8332 •2575		
			4 56789	1024 1025 1026 1027 1028 1029	$\begin{array}{r} 010 & 300 \underline{0} \\ 723 \underline{9} \\ 011 & 147 \underline{4} \\ 570 \underline{4} \\ 9931 \\ 012 & 4154 \end{array}$	342 <u>4</u> 7662 1897 6127 •035 <u>4</u> 4576	384 <u>8</u> 808 <u>6</u> 2320 6550 •077 <u>6</u> 4998	427 <u>2</u> 851 <u>0</u> 2743 697 <u>3</u> *1198 5420	469 <u>6</u> 8933 3166 739 <u>6</u> •162 <u>1</u> 5842	5120 9357 3590 7818 •204 <u>3</u> 6264	9780 401 <u>3</u> 824 <u>1</u> •2465 6685	•0204 4436 8664 •2887 7107	6391 •0627 4859 9086 •3310 7529	•1050 5282 9509 •3732 7951		

1938 Frank Benford

1883—1948

- Physicist at GE, Schenectady, NY
- Optics expert; high interest in math
- WWI: theory & design of searchlights
- Many patents

1938 Frank Benford

- 1) Noticed first pages of log tables dirtier than last pages
- 2) Concluded that numbers beginning with 1, 2 & 3s were looked up more often than those beginning with 7, 8 & 9s
- 3) Had not seen Newcomb's 1881 paper in Amer J of Math
- 4) Conjectured: probability of initial digits in a number followed

 $P(d) = log_{10}(1 + 1/d);$ where: d = 1,2,3,4,5,6,7,8,9

and $\sum P(d) = 1$

5) But, he investigated 20 different sets of natural numbers involving over 20,000 samples (1929 to 1934 when GE on 1/2 time)

		First Digit									
Col.	Title	1	2	3	4	5	6	7	8	9	Samples
A	Rivers, Area	31.0	16.4	10.7	11.3	7.2	8.6	5.5	4.2	5.1	335
В	Population	33.9	20.4	14.2	8.1	7.2	6.2	4.1	3.7	2.2	3259
С	Constants	41.3	14.4	4.8	8.6	10.6	5.8	1.0	2.9	10.6	104
D	Newspapers	30.0	18.0	12.0	10.0	8.0	6.0	6.0	5.0	5.0	100
E	Specific Heat	24.0	18.4	16.2	14.6	10.6	4.1	3.2	4.8	4.1	1389
F	Pressure	29.6	18.3	12.8	9.8	8.3	6.4	5.7	4.4	4.7	703
G	H.P. Lost	30.0	18.4	11.9	10.8	8.1	7.0	5.1	5.1	3.6	690
Н	Mol. Wgt.	26.7	25.2	15.4	10.8	6.7	5.1	4.1	2.8	3.2	1800
I	Drainage	27.1	23.9	13.8	12.6	8.2	5.0	5.0	2.5	1.9	159
J	Atomic Wgt.	47.2	18.7	5.5	4.4	6.6	4.4	3.3	4.4	5.5	91
к	n^{-1} , \sqrt{n}	25.7	20.3	9.7	6.8	6.6	6.8	7.2	8.0	8.9	5000
L	Design	26.8	14.8	14.3	7.5	8.3	8.4	7.0	7.3	5.6	560
м	Reader's Digest	33.4	18.5	12.4	7.5	7.1	6.5	5.5	4.9	4.2	308
N	Cost Data	32.4	18.8	10.1	10.1	9.8	5.5	4.7	5.5	3.1	741
0	X-Ray Volts	27.9	17.5	14.4	9.0	8.1	7.4	5.1	5.8	4.8	707
Р	Am. League	32.7	17.6	12.6	9.8	7.4	6.4	4.9	5.6	3.0	1458
Q	Blackbody	31.0	17.3	14.1	8.7	6.6	7.0	5.2	4.7	5.4	1165
R	Addresses	28.9	19.2	12.6	8.8	8.5	6.4	5.6	5.0	5.0	342
S	n^1 , $n^2 \cdots n!$	25.3	16.0	12.0	10.0	8.5	8.8	6.8	7.1	5.5	900
Т	Death Rate	27.0	18.6	15.7	9.4	6.7	6.5	7.2	4.8	4.1	418
	Average	30.6	18.5	12.4	9.4	8.0	6.4	5.1	4.9	4.7	1011
	Probable Error	± 0.8	± 0.4	± 0.4	± 0.3	± 0.2	± 0.2	± 0.2	± 0.3		

Benford's Samples

Details not known

1938 Frank Benford

- 1) Noticed first pages of log tables dirtier than last pages
- 2) Concluded that numbers beginning with 1, 2 & 3s were looked up more often than those beginning with 7, 8 & 9s
- 3) Had not seen Newcomb's 1881 paper in Amer J of Math
- 4) Conjectured: probability of initial digits in a number followed

 $P(d) = log_{10}(1 + 1/d);$ where: d = 1,2,3,4,5,6,7,8,9

and $\sum P(d) = 1$

- 5) But, he investigated 20 different sets of natural numbers involving over 20,000 samples (1929 to 1934 when GE on 1/2 time)
- 6) Published: Proc of the Amer Philosophical Soc, <u>78</u> no. 4, March, 1938, (pp. 551-571).
- 7) Paper was noticed (located just after the seminal paper on electron scattering by Bethe and Rose).
- 8) Lo, it was a beautiful "law" that was called **Benford's Law**.

Issue: What kind of numbers?

California

(58 counties, 155,959 sq. mi. land; pop. 34,501,130)

				Lanu
	County seat	2001	2000	area
County	or courthouse	Pop.	Pop.	sq.ml.
Alameda	.Oakland	1,458,420	1,443,741	738
Alpine	.Markleeville	1,192	1,208	739
Amador	.Jackson	36,269	35,100	593
Butte	.Oroville	205,973	203,171	1,639
Calaveras	.San Andreas	42,005	40,554	1,020
Colusa	.Colusa	19,277	18,804	1,151
Contra Costa	.Martinez	975,532	948,816	720
Del Norte	.Crescent City	27,554	27,507	1,008
El Dorado	.Placerville	162,586	156,299	1,711
Fresno	.Fresno	815,734	799,407	5,963
Gienn	.Willows	26,558	26,453	1,315
Humboldt	.Eureka	126,468	126,518	3,572
mperial	.El Centro	145,744	142,361	4,175
Inyo	.Independence	17,944	17,945	10,203
Kern	.Bakersfield	. 676, 367	661,645	8,141
Kings	.Hanford	132,119	129,461	1,391
1 -1-	1 - 1	00 000	FA 000	4 000

Issue: What kind of Law?

A law is a mathematical statement which always holds true. Whereas "laws" in physics are generally experimental observations backed up by theoretical underpinning, laws in mathematics are generally theorems which can formally be proven true under the stated conditions. However, the term is also sometimes used in the sense of an empirical observation, e.g., Benford's law. Wolfram MathMorld

Example: SAIC 2004 Report

A Quick Review of Statistics 1

Poisson Distribution (for enumeration, digits ≥0) with large numbers approaches normal distr.

for a mean of m, $P(d) = m^d e^{-m} / d!$ standard deviation = \sqrt{m}

A Quick Review of Statistics 2

The statistic, Chi Squared χ^2 , is summed over i by:

$$\begin{split} \chi 2 &= \sum {(F_i - f_i)^2 / F_i} \\ & \text{where: } F_i \text{ are the theoretical values} \\ & f_i \text{ are the observed values} \\ & \text{i are the observation categories} \end{split}$$

if $\chi 2$ is small, fit (hypothesis) is good if $\chi 2$ is large, fit (hypothesis) is poor

critical value of χ 2: significance df χ 2 "statistically significant" 0.05 8 15.51

Davis Recall Signatures

Initial Digit

2000 Population CA&CO counties

Fibonacci Numbers

- $F_n = F_{n-2} + F_{n-1}$
- (1, 1 start): 1,1,2,3,5,8,13,21,34,55, ... (2, 1 start)*: 2,1,3,4,7,11,18,29,47, ...

Limit $F_n/F_{n-1} = Phi = (1 + \sqrt{5})/2$ = 1.61803 (Golden Ratio)

First 20 Fibonacci Numbers

First 100 Fibonacci Numbers

First 1,474* Fibonacci Numbers

Benford: $\chi^2 = .02$

Random:

$$\chi^2 = 723$$

Exponential:

 $\chi^{2} = 53$

2,000,000 #s:

$$\chi^2 = 2 \times 10^{-4}$$

Lucas (2,1):

"Groce #s" (random):

 $\chi^2 = .05$

Divide each by π :

$$\chi^2 = .04$$

Multiply each by e:

$$\chi^2 = .06$$

Multiply by random #s:

 $\chi^2 = 5.2$

Multiply twice by rand #s:

 $\chi^2 = 3.9$

Each term (739) squared:

$$\chi^2 = .10$$

Observations

Any Benford distribution when multiplied (or divided) by any real number gives another Benford distribution.

A Benford distribution with dimensions (units) is scale invariant (miles to km, US\$ to any currency, etc.).

A Benford distribution is numerical base invariant (decimal to octal, hexadecimal, etc., but not binary.

309 NIST Physical Constants

Benford:

$$\chi^2 = 10$$

Random:

$$\chi^2 = 205$$

Exponential:

$$\chi^2 = 35$$

Reciprocals:

 $\chi^2 = 8.2$

speed of light in vacuum magn. constant electric constant characteristic impedance of vacuum Newtonian constant of gravitation Newtonian constant of gravitation over h-bar c Planck constant Planck constant in eV s Planck constant over 2 pi times c in MeV fm

m s^-1 299792458 12.566 370 614e-7 NA^-2 8.854187817e-12 F m^-1 376.730313461 ohm m^3 kg^-1 s^-2 6.6742e-11 6.7087e-39 (GeV/c^2)^-2 6.626 0693e-34 Js eV s 4.13566743 197.326 968 MeV fm

164 Mathematical Constants

Benford:
$$\chi^2 = 11$$

Random:

$$\chi^2 = 167$$

Exponential:

$$\chi^2 = 22$$

Base 8:

$$\chi^2 = 9.1$$

2.302566137 1.29621066 0.847213085 0.258819404 0.355028054 0.463647609 0.147583618 0.373955814 1.456074949 0.280169499 0.697774658 a Flajolet constant A Salem number of degree 38 A.G.M. of (1,sqrt(2)/2) -Ai'(0) or 3**(-1/3)/Gamma(1/3) Ai(0) or 3**(-2/3)/Gamma(2/3) arctan(1/2) arctan(1/2)/Pi Artin constant Backhouse constant Bernstein constant Bessell(1,2)/Bessell(0,2)

Entries in Plouffe's Inverter

Distribution of entries in Plouffe's inverter

Why does the Benford Distribution work?

Let's go back to 1961

1961 Roger Pinkham Stevens Institute of Technology

- Statistics and Probability
- Numerical Methods
- Vision Research

Prior papers dismissed Bedford's Law

Pinkham proposed that if there is such a law, it must be scale invariant.

- He proved Benford's Law is scale invariant under multiplication.
- And the Benford Distribution is the only invariant distribution.

Good (1965) suggestion re: English random number generation

Multi-Digit Benford's Law

Newcomb & Benford both proposed initial multi-digit probabilities:

Middle Digit Probabilities

Digit	First	Second	Third	Fourth
0		0.120	0.102	0.100
1	0.301	0.114	0.101	0.100
2	0.176	0.109	0.101	0.100
3	0.125	0.104	0.101	0.100
4	0.097	0.100	0.100	0.100
5	0.079	0.097	0.100	0.100
6	0.067	0.093	0.099	0.100
7	0.058	0.090	0.099	0.100
8	0.051	0.088	0.099	0.100
9	0.046	0.085	0.098	0.100
totals:	1.000	1.000	1.000	1.000

Nigrini 1996

1969 Ralph Raimi

1924 — University of Rochester

- Amateur wine maker
- Interest in academic dishonesty
- Math and Physics
- Several papers on initial digits
- Scientific American, Dec. 1969, pp. 109-120 Non-mathematical review of Benford's Intuitive explanations of distribution

1992 Mark Nigrini

1924 — Southern Methodist Univ.

WAS ONLY GUY TO MAKE \$\$\$\$ FROM BENFORD'S LAW

- Ph.D. thesis (1992):
 Detection of Income Tax Invasion by Benford
- Assistant Professor of Accounting
- Analyzed Bill Clinton's 1977-92 tax returns
- Proprietary (big \$\$\$) fraud codes for accountants Single and multiple digits, middle digits, round-off Seminars (\$150+)
- Book (2000; 32¢ per page): Digital Analysis Using Benford's Law Many cases of accounting fraud studies

Multiplication of Random Numbers

Two random #s multiplied give a negative log distribution with a "soft" infinity at zero and zero at one. (Scott, 2005)

10,000 Random Exponentials

9,210 Uniform Exponentials

Dow Jones Intuitive Explanation

- DJIA took 1983 to 1999 to go from 1,000 to 10,000
- Implied compounded appreciation rate of near 15%

Dow Jones Avg.	Theor. quarters	Actual quarters
1k to 2k	19	16
2k to 3k	11	20
3k to 4k	8	12
4k to 5k	6	4
5k to 6k	5	3
6k to 7k	4.4	2
7k to 8k	3.8	2.5
8k to 9k	3.2	2.5
9k to 10k	2.6	1
Chi-Squared	0.05	14

Slide Rule Intuitive Explanation

POST

 $\begin{array}{c} \mathsf{CF} & \frac{1}{2} \mathsf{P}^{1} \mathsf{P}^{$

C-scale: \log_{10} from 1 to 10

If select random points on C-scale and consider initial digits:

P(1) = (length of log scale from 1 to 2)/(length from 1 to 10)

= (log2 - log1)/(log10 - log1)

 $= \log 2 = 0.301$

P(d) = [log(d+1) - log(d)]/(log10 - log1)

= log(1 + 1/d) Benford's Law

1996 Ted Hill

Georgia Institute of Technology

- Math Professor
- Stochastics
- Probability theory
- Fair division
- Lottery strategies
- Hill's Theorem:
 - 1) Showed that random sampling from random distributions will converge on the Benford distr.
 - 2) Benford is the distribution of all distributions American Scientist, 1998, Vol. 13, No. 6, pp. 358-363

Why do some distributions conform to Benford's Law but others do not?

- Feller (1966) proves that the empirical distribution of any first digit in observational data follows Benford's Law.
- Hill's Theorem (1998): Benford is the distribution of all distributions. Real data can be a complex mix of many distributions.
- Boyle (1994) proved that:
 - The Benford distr. is the limiting distribution when random variables are repeatedly multiplied, divided, or raised to integer powers.
 - Once achieved, the Benford distribution persists under all further multiplication, division, and raising to integer powers.
- Nigrini (2000): "We should never assume, dogmatically, that the Law must apply."
- Limitations
 - Numbers with a natural or social origin, with dimensions, from calculations
 - No built-in min or max
 - Not assigned numbers (SSNs, car licenses, lottery numbers)
 - Numbers should not unduly duplicated
 - Four or more digits?
 - Sets should have 100+ terms (digit-9 < 5%)

Practical Applications 1

• S. S. Goudsmit (electron spin) in 1978:

... To a physicist Simon Newcomb's explanation of the firstdigit phenomenon is more than sufficient "for all practical purposes." Of course here the expression "for all practical purposes" has no meaning. There are no practical purposes, unless you consider betting for money on the first digit frequencies with gullible colleagues a practical use.

 Ian Stewart (1993) writes of betting on first digits at a trade fair in England.

Practical Applications 2

- Errors in data sets.
 - NYSE daily volumes of buy-sell transactions (Benford distr.)
 - NASDAQ daily volume of each buy and each sell transaction (Benford distr.)
- Fraud detection: accounting, pay roll, tax returns (Nigrini, 2000)
 - Reported interest received: excess lower first digits.
 - Reported interest paid: excess higher first digits.
- Prices, sales figures
- Forecasts from data (Varian, 1972)
- Computer round off errors (Tsao, 1974)
- Failure rates and MTTF tables (Becker, 1982)
- Numerical structure of the Quran.
- Mathematician Peter Schatte at the Bergakademie Technical University, Freiberg, has come up with rules that optimize computer data storage, by allocating disk space according to the proportions dictated by Benford's law.

2005 Alex Trahan

Sophomore, La Jolla High School

- Science team member of 50±
- Freshman science award
- Academic varsity letter
- Academic League
- Benford Science Fair math project

"When does Randomness End" How fast do random numbers and functions statistically converge to a Benford distribution? Sweepstakes Runner-up

- First Place
- Will go to State Science Fair
- Three Society Awards

Has also made \$\$ from Benford's Law

References

- 1. "Benford's Law" in Google gets 9,920 references.
- 2. Benford's Law now has a journal:

Frequencies The Journal of Size Law Applications (pub 2001)

3. Benford's Law has hit the big-time newspapers:

Wall Street Journal: L. Berton, *He's got their numbers: scholar uses math to foil financial fraud*, p. B1, 10 July 1995
New York Times: Malcolm W. Brown, *Following Benford's Law, or Looking Out for No. 1*, 4 August 1998

4. Journal articles:

Simon Newcomb, Amer J of Math, vol 4, 1881 (pp. 39–40)

Frank Benford, Proc of the Amer Philosophical Soc, vol 78, no 4, March, 1938 (pp 551–571)

5. Science Magazines:

Ralph Raimi, Sci American, December 1969 (pp 109–119)

T. P. Hill, Amer Scientist, vol 86, July-August 1998 (pp 358–363)

6. Book:

March J. Nigrini, Ph.D., *Digital Analysis Using Benford's Law*, Global Audit Publications, Vamcouver, 2000 (ISBN 1-894497-09)

LANL Monte Carlo from Bill Scott

Benford TidBits

 Nigrini (2000) claims for a Benford distr. the sums of all numbers with each initial digit are equal. Close but no cigar; ±10%.

Chi-Squared vs. Significance

Goodness of Fit

Null Hypothesis: Observed distr. Is a random sample of the theoretical distr.

Significance (alpha): Risk of rejecting Null Hypothesis when it is true (Type I Error). Statisticians consider alpha of 0.05 to be statistically significant (1 chance in 20 of rejecting a true Null Hypothesis).

Chi-Sq	alpha	Chi-sq	alpha
15.5	0.05	2.7	0.95
13.4	0.10	2.2	0.975
10.2	0.25	1.7	0.99
7.3	0.50	1.3	0.995
6.2	0.75	0.9	0.999
3.5	0.90	0.5	0.9999

χ^2 for Interesting Sets of #s

	Sample #	Bedford	Random	Exp.
Fibonacci	20	3.3	8.8	
Fibonacci	100	1.0	50	4.8
Fibonacci	200	0.7	98	8.5
Fibonacci	1,474 (1,1)	0.02	723	53
Lucas #s	1,474 (2,1)	0.06	723	53
"Groce #s"	1,474 (random)	0.05	716	54
Fibonacci	2,000,000	2 x 10 ⁻⁴		
Fibonacci	1,474 (div by π)	0.04	718	52
Fibonacci	1,474 (times e)	0.06	719	53
Fibonacci	Multiply each by random #s	5.2	700	56
Fibonacci	Multiply each twice by rand #s	3.9	693	71
Fibonacci	Square each term (739)	0.10	364	27
Bernoulli #s	32	4.0	14	
Euler #s	30	11	25	12
	070	4.0		

Addition?

- Addition of two random numbers [0 to 1] gives a triangular distribution with zero at both ends of interval (0 and 1) with a peak at 0.5. Scott (2005)
- Digit frequencies will be distorted by addition or subtraction unless the amount is small.

Area California Counties

Square miles

Square kilometers

58 Counties:

Square Miles: $\chi^2 = 6.1$

Square Kilometers: $\chi^2 = 3.7$

if $\chi 2$ is small: good fit if $\chi 2$ is large: poor fit critical value of $\chi 2$: Alpha χ2 df 8 15.51

0.05

Reciprocal Phys Constants

Benford: $\chi^2 = 8.2$

Random:

f

$$\chi^2 = 134$$

Exponential:

$$\chi^2 = 26$$

Multiplication of Random Numbers

Two random #s multiplied give a negative log distribution with a "soft" infinity at zero and zero at one. (Scott, 2005) Random #s: $\chi^2 = 397$

1,474 Lucas Numbers (2,1 start)

Groce 2003 IRS Return

Compound Interest (\$100 to \$1k in 981 periods)

First 200 Fibonacci Numbers

Fibonacci: $\chi^2 = 0.7$

Divided by π : $\chi^2 = 0.3$

Multiplied by e: $\chi^2 = 0.5$

if $\chi 2$ is small: good fit if $\chi 2$ is large: poor fit

critical value of $\chi 2$:

Alpha	df	χ2
0.05	8	15.51